
MORE RECURSION AND TREE RECURSION

COMPUTER SCIENCE MENTORS CS 88

March 15th to 19th

1 Recursion

1. Write a function that takes in an integer n, and returns True if the digits of the number
are strictly increasing from left to right, and False otherwise.
def is_increasing(n):

"""
>>> is_increasing(2222)
False
>>> is_increasing(56789)
True
>>> is_increasing(56788)
False
"""

1



CSM 88: MORE RECURSION AND TREE RECURSION Page 2

2. Implement a recursive fizzbuzz.
def fizzbuzz(n):

"""Prints the numbers from 1 to n. If the number is
divisible by 3, it instead prints 'fizz'. If the number
is divisible by 5, it instead prints 'buzz'. If the
number is divisible by both, it prints 'fizzbuzz'.

>>> fizzbuzz(15)
1
2
fizz
4
buzz
fizz
7
8
fizz
buzz
11
fizz
13
14
fizzbuzz
"""

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: MORE RECURSION AND TREE RECURSION Page 3

2 Tree Recursion

Consider a function that requires more than one recursive call. A simple example is the
recursive fibonacci function:
def fib(n):

if n == 0:
return 0

elif n == 1:
return 1

else:
return fib(n - 1) + fib(n - 2)

This type of recursion is called tree recursion, because it makes more than one re-
cursive call in its recursive case. If we draw out the recursive calls, we see the recursive
calls in the shape of an upside-down tree:

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, problems that are
naturally solved using tree recursive procedures are generally difficult to write iteratively.
It is sometimes the case that a tree recursive problem also involves iteration: for example,
you might use a while loop to add together multiple recursive calls.
As a general rule of thumb, whenever you need to try multiple possibilities at the same
time, you should consider using tree recursion.

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: MORE RECURSION AND TREE RECURSION Page 4

1. Mario needs to jump over a series of Piranha plants, represented as a string of 0’s and
1’s. Mario only moves forward and can either step (move forward one space) or jump
(move forward two spaces) from each position. How many different ways can Mario
traverse a level without stepping or jumping into a Piranha plant? Assume that every
level begins with a 1 (where Mario starts) and ends with a 1 (where Mario must end
up). Hint: Does it matter whether Mario goes from left to right or right to left? Which one is
easier to check?
def mario_number(level):

"""
Return the number of ways that Mario can traverse the
level, where Mario can either hop by one digit or two
digits each turn. A level is defined as being an integer
with digits where a 1 is something Mario can step on and
0 is something Mario cannot step on.
>>> mario_number(10101)
1
>>> mario_number(11101)
2
>>> mario_number(100101)
0
"""
if ___________:

_________

elif ________________:

_________

else:

___________________________________________________

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: MORE RECURSION AND TREE RECURSION Page 5
2. Write a procedure merge(s1, s2) which takes two sorted (smallest value first) lists

and returns a single list with all of the elements of the two lists, in ascending order.
Use recursion.

Hint: If you can figure out which list has the smallest element out of both, then we
know that the resulting merged list will have that smallest element, followed by the
merge of the two lists with the smallest item removed. Don’t forget to handle the case
where one list is empty!
def merge(s1, s2):

""" Merges two sorted lists
>>> merge([1, 3], [2, 4])
[1, 2, 3, 4]
>>> merge([1, 2], [])
[1, 2]
"""

3. We will now write one of the faster sorting algorithms commonly used, known as
merge sort. Merge sort works like this:

1. If there is only one (or zero) item(s) in the sequence, it is already sorted!

2. If there are more than one item, then we can split the sequence in half, sort each
half recursively, then merge the results, using the merge procedure from earlier
in the notes. The result will be a sorted sequence.

Using the algorithm described, write a function mergesort(seq) that takes an un-
sorted sequence and sorts it. You can use merge(s1, s2) as a helper function.
def mergesort(seq):

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: MORE RECURSION AND TREE RECURSION Page 6

3 Challenge Problems

1. Tony wants to print this week’s discussion handouts for all the students in CS 88.
However, both printers are broken! The first printer only prints multiples of n
pages, and the second printer only prints multiples of m pages. Help Tony figure out
whether or not it’s possible to print exactly total number of handouts!

def has_sum(total, n, m):
"""
>>> has_sum(1, 3, 5)
False
>>> has_sum(5, 3, 5) # 0 * 3 + 1 * 5 = 5
True
>>> has_sum(11, 3, 5) # 2 * 3 + 1 * 5 = 11
True
"""
if ____________________________________________________:

return ____________________________________

elif __________________________________________________:

return ____________________________________

return ________________________________________________

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: MORE RECURSION AND TREE RECURSION Page 7

2. The next day, the printers break down even more! Each time they are used, the first
printer prints a random x copies 50 ≤ x ≤ 60, and the second printer prints a random
y copies 130 ≤ y ≤ 140. Tony also relaxes his expectations: he’s satisfied as long as
there’s at least lower copies so there are enough for everyone, but no more than
upper copies to prevent waste.

def sum_range(lower, upper):
"""
>>> sum_range(45, 60) # Printer 1 prints within this range
True
>>> sum_range(40, 55) # Printer 1 can print a number 56-60
False
>>> sum_range(170, 201) # Printer 1 + 2 will print between

180 and 200 copies total
True
"""
def copies(pmin, pmax):

if ________________________________________________:

return ____________________________________

elif ______________________________________________:

return ____________________________________

return ____________________________________________

return copies(0, 0)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu


	Recursion
	Tree Recursion
	Challenge Problems

