RECURSION AND MIDTERM REVIEW

COMPUTER SCIENCE MENTORS CS 88

March 8th to March 12th

Recursion

A recursive function is a function that is defined in terms of itself. One might want to use
recursion when a problem is more easily expressed in terms of its sub-problems.

Here is an example of using recursion to sum all the numbers from 1 to n, assuming n is
a positive integer.
def sum_to_ni(n):
if n == 1:
return 1
else:
return n + sum_to_n(n-1)

The base case is usually the the simplest case that your function handles (in this case,
where the input is 1) since the problem cannot be further divided into smaller sub prob-
lems.

In the recursive case, we call our function on a smaller version of the input, namely on an
input size of n - 1, because we now want to find the sum of numbers until n - 1, and then
simply add our current number, n, to the overall sum.

You may be thinking, why can’t I use iteration for this? If you did, you're right! Iteration
can indeed be used to write this specific function as well, and often times, functions can
be expressed both iteratively and recursively. It may just be that sometimes, the recursive
approach is more intuitive or simpler, and vice versa.

CSM 88: RECURSION AND MIDTERM REVIEW Page 2

1. Find everything wrong with the following function. How can we fix each issue?
def factorial(n):
return n * factorial (n)

Solution: There is no base case and the recursive call is made on the same n.
def factorial (n):
if n == 0:
return 1
else:
return n * factorial(n - 1)

2. Complete the definition for num_digits, which takes in a number n and returns the
number of digits it has.
def num digits(n):
"""Takes in an positive integer and returns the number of
digits.

>>> num_digits (0)

1

>>> num_digits (1)

1

>>> num_digits (7)

1

>>> num_digits (1093)
4

Solution:
if n < 10:
return 1
else:
return 1 + num_digits(n // 10)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: RECURSION AND MIDTERM REVIEW

Page 3
3. Write a function that takes two numbers m and n and returns their product. Assume

the inputs are positive integers. Use recursion, not mul, ¥, or iteration!
def multiply(m, n):

>>> multiply (3, 5)
15

Solution:
if n == 1:
return m
else:

return m + multiply(m, n - 1)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with

Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: RECURSION AND MIDTERM REVIEW

Page 4

4. Implement sum_some, which takes a non-negative integer n and a function p. It re-
turns the sum of all the digits d for which p returns a true value when given d as an
argument. Assume that the function p takes a single digit d (from 0 to 9) and returns

either True or False.
def even (x):

[e)

return x % 2 == 0

def big(x):

return x > 5

def sum_some(n, p):
>>> sum_some (124567, even) # Sum even digits: 2 + 4 + 6
12
>>> sum_some (124567, big) # Sum big digits: 6 + 7
13
mmwn
Solution:
Iterative solution
total = 0
while n:

if p(n % 10):

total += n % 10
n // 10

return total

n =

Solution:

Recursive

if n == 0:
return 0

else:
x =n % 10
if p(x):

return x + sum_some(n // 10, p)

return sum_some(n // 10, p)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: RECURSION AND MIDTERM REVIEW Page 5

Midterm Review

5. (a) Given a list 1st, and an index i, return whether or not num appears at index i
or onwards in the given 1st.
def contains_num_after_ i (lst, num, 1i):

>>> contains_num_after_i((1, 11, 3, 4, 5, 6, 7, 8], 11,

3)

False

>>> contains_num after i([1, 2, 11, 4, 5, 6, 7, 8], 11,
3)

False

>>> contains_num after i([1, 2, 3, 11, 5, 6, 7, 81, 11,
3)

True

>>> contains_num_after_i((1, 11, 3, 4, 5, 6, 7, 117,
11, 5)

True

mmwn

Solution:
for j in range (i, len(lst)):
if 1st[j] == num:

return True
return False

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: RECURSION AND MIDTERM REVIEW Page 6
(b) Return whether or not there are duplicates in the given 1st. Hint: Call the func-
tion above!
def duplicates(lst):
wwun
>>> duplicates([1, 11, 3, 4, 5, 6, 7, 8])
False
>>> duplicates([1, 2, 11, 4, 5, 6, 7, 81)
False
>>> duplicates([1, 2, 3, 11, 5, 6, 7, 3, 81)
True
>>> duplicates (1, 11, 4, 4, 9, 5, 6, 7, 11])
True

Solution:
for i in range(len(lst)):
if contains_num after_ i(lst, 1lst[i], i+1):
return True
return False

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: RECURSION AND MIDTERM REVIEW Page 7

6. Write a function, whole_sum, which takes in an integer, n. It returns another function
which takes in an integer, and returns True if the digits of that integer sum to n and
False otherwise.
def whole_sum(n) :

nmmww

>>> whole_sum(21) (777)

True

>>> whole_sum(142) (10010101010)
False

def check (x):

while

last =

return

return

Solution:
def whole_sum(n) :
def check (x):
total = 0
while x > 0:
last = x % 10
x =x // 10
total += last
return total == n
return check

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: RECURSION AND MIDTERM REVIEW

Page 8

7. Fill in the blanks (without using any numbers in the first blank) such that the entire ex-
pression evaluates to 9.

Solution:
(lambda x: lambda y: lambda: y(x)) (3) (lambda z:

z%xz) ()

8. Draw the box-and-pointer diagram.

>>>
>>>

>>>
>>>
>>>

>>>
>>>
>>>

violet = [7, 77, 17]
violet.append([violet.pop(1l)])

dash = violet = 2
jack = dash[3:5]
jackjack = jack.extend (jack)

helen = list (violet)
helen += [jackjack]
helen[2] .append(violet)

Solution: https://goo.gl/EAMZBW

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

https://goo.gl/EAmZBW

CSM 88: RECURSION AND MIDTERM REVIEW

Page 9

9. Given some list 1st, possibly a deep list, mutate 1st to have the accumulated sum of
all elements so far in the list. If there is a nested list, mutate it to similarly reflect the
accumulated sum of all elements so far in the nested list. Return the total sum of 1st.

Hint: The isinstance function returns True for isinstance (1,

list and False otherwise.
def accumulate(lst):

>>> 1 = [1, 5, 13, 4]

>>> accumulate (1)

23

>>> 1

[1, 6, 19, 23]

>>> deep_l = [3, 7, [2, 5, 61,
>>> accumulate (deep_1)

32

>>> deep_1
(3, 10, (2, 7, 13], 32]

for

if isinstance(

inside =

14

list):

else:

list) if 1isa

Solution:
sum_so_far = 0
for i in range (len(lst)):
item = 1lst[i]
if isinstance(item, 1list):

sum_so_far += inside
else:
sum_so_far += item
lst[i] = sum_so_far
return sum_so_far

inside = accumulate (item)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with

Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,

Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: RECURSION AND MIDTERM REVIEW Page 10
In lecture, we discussed the rat ional data type, which represents fractions with the
following methods:

e rational (n, d) -constructs a rational number with numerator n, denomina-
tord

® numer (x) -returns the numerator of rational number x
e denom (x) - returns the denominator of rational number x

We also presented the following methods that perform operations with rational num-
bers:

® add.rationals(x, vy)
®* mul rationals(x, V)
® rationals_are_equal (x, V)
There is a lot we can do with just these simple methods.

10. Implement the following rational number methods.
def inverse_rational (x):

"""Returns the inverse of the given non-zero rational
number

Solution:
return rational (denom(x), numer (x))

def div_rationals(x, Vy):

"""Returns x / y for given rational x and non-zero
rational y

Solution:

return mul_rationals(x, inverse_rational (y))

CSM 88 Spring 2021: Ada Hu and Tony Kam, with

Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

	Recursion
	Midterm Review

