
ABSTRACT DATA TYPES AND MUTABLE DATA

COMPUTER SCIENCE MENTORS CS 88

March 1st to 5th

1 Conceptual Start

1. What are the two types of functions necessary to make an Abstract Data Type? What
do they do?

2. Assume that rational, numer, denom, and gcd run without error and behave as de-
scribed below. Can you identify where the abstraction barrier is broken? Come up
with a scenario where this code runs without error and a scenario where this code
would stop working.
def rational(num, den): # Returns a rational number ADT

#implementation not shown
def numer(x): # Returns the numerator of the given rational

#implementation not shown
def denom(x): # Returns the denominator of the given rational

#implementation not shown
def gcd(a, b): # Returns the GCD of two numbers

#implementation not shown

def simplify(f1): #Simplifies a rational number
g = gcd(f1[0], f1[1])
return rational(numer(f1) // g, denom(f1) // g)

def multiply(f1, f2): # Multiples and simplifies two rationals
r = rational(numer(f1) * numer(f2), denom(f1) * denom(f2))
return simplify(r)

x, y = rational(1, 2), rational(2, 3)
multiply(x, y)

1



CSM 88: ABSTRACT DATA TYPES AND MUTABLE DATA Page 2

3. Check your understanding

1 How do we know when we are breaking an abstraction barrier?

2 What are the benefits to Data Abstraction?

2 Code Writing

4. The following is an Abstract Data Type (ADT) for elephants. Each elephant keeps
track of its name, age, and whether or not it can fly. Given our provided constructor,
fill out the selectors:
def elephant(name, age, can_fly):

"""
Takes in a string name, an int age, and a boolean can_fly.
Constructs an elephant with these attributes.
>>> dumbo = elephant("Dumbo", 10, True)
>>> elephant_name(dumbo)
"Dumbo"
>>> elephant_age(dumbo)
10
>>> elephant_can_fly(dumbo)
True
"""
return [name, age, can_fly]

def elephant_name(e):

def elephant_age(e):

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ABSTRACT DATA TYPES AND MUTABLE DATA Page 3
def elephant_can_fly(e):

5. This function returns the correct result, but there’s something wrong about its imple-
mentation. How do we fix it?
def elephant_roster(elephants):

"""
Takes in a list of elephants and returns a list of their

names.
"""
return [elephant[0] for elephant in elephants]

6. Fill out the following constructor for the given selectors.
def elephant(name, age, can_fly):

def elephant_name(e):
return e[0][0]

def elephant_age(e):
return e[0][1]

def elephant_can_fly(e):
return e[1]

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ABSTRACT DATA TYPES AND MUTABLE DATA Page 4

7. How can we write the fixed elephant_roster function for the constructors and
selectors in the previous question?

8. Fill out the following constructor for the given selectors.
def elephant(name, age, can_fly):

"""
>>> chris = elephant("Chris Martin", 38, False)
>>> elephant_name(chris)

"Chris Martin"
>>> elephant_age(chris)

38
>>> elephant_can_fly(chris)

False
"""
def select(command):

return select
def elephant_name(e):

return e("name")

def elephant_age(e):
return e("age")

def elephant_can_fly(e):
return e("can_fly")

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ABSTRACT DATA TYPES AND MUTABLE DATA Page 5

3 Dictionaries

Dictionaries are containers that map keys to values. Let’s look at an example:

>>> pokemon = {'pikachu': 25, 'dragonair': 148, 'mew': 151}
>>> pokemon['pikachu']
25
>>> pokemon['jolteon'] = 135
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148, 'mew': 151}
>>> pokemon['ditto'] = 25
>>> pokemon
{'jolteon': 135, 'pikachu': 25, 'dragonair': 148,
'ditto': 25, 'mew': 151}

The keys of a dictionary must be immutable values, such as numbers, strings, tuples,
etc. Dictionaries themselves are mutable; we can add, remove, and change entries
after creation. Finally, there is only one value per key, however — if we assign a new
value to the same key, it overrides any previous value which might have existed. See
below for some common uses of dictionaries:

• To add val corresponding to key or to replace the current value of key with val:
dictionary[key] = val

• To iterate over a dictionary’s keys:
for key in dictionary: #OR for key in dictionary.keys()

do_stuff()

• To iterate over a dictionary’s values:
for value in dictionary.values():

do_stuff()

• To iterate over a dictionary’s keys and values:
for key, value in dictionary.items():

do_stuff()

• To remove an entry in a dictionary:
del dictionary[key]

• To get the value corresponding to key and remove the entry:
dictionary.pop(key)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ABSTRACT DATA TYPES AND MUTABLE DATA Page 6
9. Given a list key that contains the keys, and another list values that contains all the

values for a key-value pair. Write a function that returns a dictionary with key-values
pairs for each element in the two lists that share the same index. However, if the
values list is longer than the keys list, the subsequent elements in the values list
will wrap around and replace the key-value pair starting from the beginning.
def create_dict(keys, values):

"""
>>> prompts = ["Movie", "Song", "Food", "Shop"]
>>> answers = ["Brave", "Yellow", "Steak", "Target"]
>>> favorites = create_dict(prompts, answers)
>>> favorites
{"Movie": "Brave", "Song": "Yellow", "Food": "Steak", "

Shop": "Target"}
>>> keys = [0, 1, 2, 3]
>>> values = ["ice", "cream", "is", "yummy", "vanilla", "

cake"]
>>> d = create_dict(keys, values)
>>> d
{0: "vanilla", 1: "cake", 2: "is", 3: "yummy"}

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ABSTRACT DATA TYPES AND MUTABLE DATA Page 7
10. Given two dictionaries a and b, mutate a to contain all of the keys-values pairs from

b. Note if the value in a is a list, insert the value from b in the end of the list (you may
assume the values in b will never be lists).
def add_all(a, b):

"""
>>> a = {x: x for x in range(3)}
>>> b = {x: 1 for x in range(2)}
>>> c = {0: "who is tony"}
>>> add_all(a, b)
>>> a
{0: [0, 1], 1: [1, 1], 2: 2}
>>> add_all(a, c)
>>> a
{0: [0, 1, 'who is tony'], 1: [1, 1], 2: 2}
"""

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu


	Conceptual Start
	Code Writing
	Dictionaries

