
LISTS

COMPUTER SCIENCE MENTORS CS 88

February 15th to 20th

1 Lists

Introduction In Python, lists are ordered collections of whatever values we want, be
it numbers, strings, functions, or even other lists! Each value stored inside a list is
called an element. We can create lists by using square braces.

>>> foods = ['apple', 'oranges', 'banana', 'milk', 'cookies']
>>> print(foods)
['apple', 'oranges', 'banana', 'milk', 'cookies']

Accessing elements Lists are zero-indexed: to access the first element, we must
access the element at index 0; to access the ith element, we must index at i− 1. We
can also index with negative numbers. This begins indexing at the end of the list, so
the index −1 is equivalent to the index len(list) - 1 and index −2 is the same as
len(list) - 2.
Examples:

>>> foods[0]
'apple'
>>> foods[2]
'banana'
>>> foods[-3]
'banana'

1

CSM 88: LISTS Page 2
Sequences also have a notion of length, the number of items stored in the sequence.
In Python, we can check how long a sequence is with the len built-in function. We
can also check if an item exists within a list with the in statement.

>>> poke_team = ['Meowth', 'Mewtwo']
>>> len(poke_team)
2
>>> 'Meowth' in poke_team
True
>>> 'Pikachu' in poke_team
False

2 List Comprehension

A list comprehension is a compact way to create a list whose elements are the
results of applying a fixed expression to elements in another sequence. [<map exp>

for <name> in <iter exp> if <filter exp>]

It might be helpful to note that we can rewrite a list comprehension as an equivalent
for statement. See the example to the right.

Let’s break down an example:

[x * x - 3 for x in [1, 2, 3, 4, 5] if x % 2 == 1]

In this list comprehension, we are creating a new list after performing a series of
operations to our initial sequence [1, 2, 3, 4, 5]. We only keep the elements
that satisfy the filter expression x % 2 == 1 (1, 3, and 5). For each retained element,
we apply the map expression x*x - 3 before adding it to the new list that we are
creating, resulting in the output [-2, 6, 22].

Note: The if clause in a list comprehension is optional.

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LISTS Page 3

3 WWPD

1. What would Python display?
>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])

Solution:
1 3

>>> len(a)

Solution: 5

>>> 2 in a

Solution: False

>>> 4 in a

Solution: True

>>> a[3][0]

Solution: 2

Solution: Video walkthrough

>>> print(print("Welcome to"), print("CS 88"))

Solution:

Welcome to
CS 88
None None

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

https://www.youtube.com/watch?v=zP4jWZpwACM&index=1&list=PLx38hZJ5RLZcgrSJp16YmzNwn9hL5JD8q&vq=hd1080&t=14m22s

CSM 88: LISTS Page 4

4 Code Writing Questions

2. Write a function that takes in a list and prints the elements in the list at indices that
are divisible by 3.
def every_third(lst):

"""
>>> lst1 = [1, 4, 7, 9, 6, 3, 2, 10, 5]
>>> every_third(lst1)
1
9
2
>>> lst2 = [5, 3, 1, 7]
>>> every_third(lst2)
5
7
>>> lst3 = [4, 7]
>>> every_third(lst3)
4
"""

Solution:
def every_third(lst):

for idx in range(len(lst)):
if idx % 3 == 0:

print(lst[idx])

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LISTS Page 5

3. Write a function that returns the sum of all even numbers from 2 to n.

(Hint: If n = 10, return 2 + 4 + 6 + 8 + 10)

Assume n is always greater than or equal to 2.
def sum_even_to(n):

"""
>>> sum_even_to(6) # 2 + 4 + 6
12
>>> sum_even_to(10) # 2 + 4 + 6 + 8 + 10
30
>>> sum_even_to(11) # Still 2 + 4 + 6 + 8 + 10
30
"""

Solution:
For loop solution
def sum_even_to(n):

total = 0
for i in range(2, n+1):

if i % 2 == 0:
total = total + i

return total

While loop solution
def sum_even_to(n):

total = 0
while n > 0:

if n % 2 == 0:
total = total + n

n = n - 1
return total

Another while loop solution
def sum_even_to(n):

total = 0
i = 2
while i <= n:

total = total + i
i = i + 2

return total

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LISTS Page 6

4. Write a function that takes in a list of numbers and returns a list containing only the
even numbers from the given list. Use a list comprehension.
def only_even(lst):

"""
>>> lst1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> only_even(lst1)
[2, 4, 6, 8]
>>> lst2 = [5, 3, 1, 7]
>>> only_even(lst2)
[]
>>> lst3 = [4, 7, 10]
>>> only_even(lst3)
[4, 10]
"""

Solution:
def only_even(lst):

return [element for element in lst if element % 2 == 0]

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LISTS Page 7

5 Optional Challenging problem!

5. Write a function that returns the longest string in a list of strings. You can assume the
list has at least one string.
def longest_string(lst):

"""
>>> food = ["pie", "burgers", "mashed potatoes", "fries"]
>>> longest_string(food)
'mashed potatoes'
>>> colors = ["green", "red", "purple", "turquoise"]
>>> longest_string(colors)
'turquoise'
"""

Solution:
def longest_string(lst):

answer = ""
for x in lst:

if len(x) > len(answer):
answer = x

return answer

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LISTS Page 8

6. Draw the environment diagram that results from running the following code.
bless, up = 3, 5
another = [1, 2, 3, 4]
one = another[1:]

another[bless] = up
another.append(one.remove(2))
another[another[0]] = one
one[another[0]] = another[1]
one = one + [another.pop(3)]
another[1] = one[1][1][0]
one.append([one.pop(1)])

Solution: https://goo.gl/FyMmbJ

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

https://goo.gl/FyMmbJ

	Lists
	List Comprehension
	WWPD
	Code Writing Questions
	Optional Challenging problem!

