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1 Lists

Introduction In Python, lists are ordered collections of whatever values we want, be
it numbers, strings, functions, or even other lists! Each value stored inside a list is
called an element. We can create lists by using square braces.

>>> foods = ['apple', 'oranges', 'banana', 'milk', 'cookies']
>>> print(foods)
['apple', 'oranges', 'banana', 'milk', 'cookies']

Accessing elements Lists are zero-indexed: to access the first element, we must
access the element at index 0; to access the ith element, we must index at i− 1. We
can also index with negative numbers. This begins indexing at the end of the list, so
the index −1 is equivalent to the index len(list) - 1 and index −2 is the same as
len(list) - 2.
Examples:

>>> foods[0]
'apple'
>>> foods[2]
'banana'
>>> foods[-3]
'banana'
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Sequences also have a notion of length, the number of items stored in the sequence.
In Python, we can check how long a sequence is with the len built-in function. We
can also check if an item exists within a list with the in statement.

>>> poke_team = ['Meowth', 'Mewtwo']
>>> len(poke_team)
2
>>> 'Meowth' in poke_team
True
>>> 'Pikachu' in poke_team
False

2 List Comprehension

A list comprehension is a compact way to create a list whose elements are the
results of applying a fixed expression to elements in another sequence. [<map exp>

for <name> in <iter exp> if <filter exp>]

It might be helpful to note that we can rewrite a list comprehension as an equivalent
for statement. See the example to the right.

Let’s break down an example:

[x * x - 3 for x in [1, 2, 3, 4, 5] if x % 2 == 1]

In this list comprehension, we are creating a new list after performing a series of
operations to our initial sequence [1, 2, 3, 4, 5]. We only keep the elements
that satisfy the filter expression x % 2 == 1 (1, 3, and 5). For each retained element,
we apply the map expression x*x - 3 before adding it to the new list that we are
creating, resulting in the output [-2, 6, 22].

Note: The if clause in a list comprehension is optional.
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3 WWPD

1. What would Python display?
>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])

Solution:
1 3

>>> len(a)

Solution: 5

>>> 2 in a

Solution: False

>>> 4 in a

Solution: True

>>> a[3][0]

Solution: 2

Solution: Video walkthrough

>>> print(print("Welcome to"), print("CS 88"))

Solution:

Welcome to
CS 88
None None
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4 Code Writing Questions

2. Write a function that takes in a list and prints the elements in the list at indices that
are divisible by 3.
def every_third(lst):

"""
>>> lst1 = [1, 4, 7, 9, 6, 3, 2, 10, 5]
>>> every_third(lst1)
1
9
2
>>> lst2 = [5, 3, 1, 7]
>>> every_third(lst2)
5
7
>>> lst3 = [4, 7]
>>> every_third(lst3)
4
"""

Solution:
def every_third(lst):

for idx in range(len(lst)):
if idx % 3 == 0:

print(lst[idx])
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3. Write a function that returns the sum of all even numbers from 2 to n.

(Hint: If n = 10, return 2 + 4 + 6 + 8 + 10)

Assume n is always greater than or equal to 2.
def sum_even_to(n):

"""
>>> sum_even_to(6) # 2 + 4 + 6
12
>>> sum_even_to(10) # 2 + 4 + 6 + 8 + 10
30
>>> sum_even_to(11) # Still 2 + 4 + 6 + 8 + 10
30
"""

Solution:
# For loop solution
def sum_even_to(n):

total = 0
for i in range(2, n+1):

if i % 2 == 0:
total = total + i

return total

# While loop solution
def sum_even_to(n):

total = 0
while n > 0:

if n % 2 == 0:
total = total + n

n = n - 1
return total

# Another while loop solution
def sum_even_to(n):

total = 0
i = 2
while i <= n:

total = total + i
i = i + 2

return total
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4. Write a function that takes in a list of numbers and returns a list containing only the
even numbers from the given list. Use a list comprehension.
def only_even(lst):

"""
>>> lst1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> only_even(lst1)
[2, 4, 6, 8]
>>> lst2 = [5, 3, 1, 7]
>>> only_even(lst2)
[]
>>> lst3 = [4, 7, 10]
>>> only_even(lst3)
[4, 10]
"""

Solution:
def only_even(lst):

return [element for element in lst if element % 2 == 0]
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5 Optional Challenging problem!

5. Write a function that returns the longest string in a list of strings. You can assume the
list has at least one string.
def longest_string(lst):

"""
>>> food = ["pie", "burgers", "mashed potatoes", "fries"]
>>> longest_string(food)
'mashed potatoes'
>>> colors = ["green", "red", "purple", "turquoise"]
>>> longest_string(colors)
'turquoise'
"""

Solution:
def longest_string(lst):

answer = ""
for x in lst:

if len(x) > len(answer):
answer = x

return answer
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6. Draw the environment diagram that results from running the following code.
bless, up = 3, 5
another = [1, 2, 3, 4]
one = another[1:]

another[bless] = up
another.append(one.remove(2))
another[another[0]] = one
one[another[0]] = another[1]
one = one + [another.pop(3)]
another[1] = one[1][1][0]
one.append([one.pop(1)])

Solution: https://goo.gl/FyMmbJ
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