ENVIRONMENT DIAGRAMS AND HOFS

COMPUTER SCIENCE MENTORS CS 88

February 8- 13

Environment Diagrams

¢ Creating a Function
1. Draw the func <name>(<argl>, <arg2>, ...)

2. The parent of the function is wherever the function was defined (the frame we're
currently in, since we're creating the function).

3. If we used def, make a binding of the name to the value in the current frame.
¢ Calling User Defined Functions
1. Evaluate the operator and operands.

2. Create a new frame; the parent is whatever the operator’s parent is. Now this is
the current frame.

3. Bind the formal parameters to the argument values (the evaluated operands).
4. Evaluate the body of the operator in the context of this new frame.
5. After evaluating the body, go back to the frame that called the function.
¢ Assignment
1. Evaluate the expression to the right of the assignment operator (=).

2. Bind the variable name to the value of the expression in the identified frame. Be
sure you override the variable name if it had a previous binding.

¢ Lookup
1. Start at the current frame. Is the variable in this frame? If yes, that’s the answer.
2. Ifitisn’t, go to the parent frame and repeat 1.

3. If you run out of frames (reach the Global frame and it’s not there), complain.



CSM 88: ENVIRONMENT DIAGRAMS AND HOFs Page 2
1. Draw the environment diagram for evaluating the following code
def dessef (a, b):

c =a+b
b=Db+ 1
b =6

dessef (b, 4)

2. Draw the environment diagram for evaluating the following code
def foo(x, vy):
foo = bar
return foo (bar(x, x), V)

def bar(z, x):
return z + y

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ENVIRONMENT DIAGRAMS AND HOFs Page 3

Higher Order Functions

A higher order function (HOF) is a function that does at least one of the following;:
* accepts at least one function as an argument
* returns a function

HOFs utilize the concept of treating functions as data just like any type of value such as
integers, strings, lists, booleans, etc.

Functions as Arguments

Taking in functions as arguments can help generalize our code. Imagine we have a func-
tion mul-by-2 which will take in a list and multiply each element by 2. If we’d want to
be able to do something similar to mul-by-2 but apply a different operation, we’d have
to make a different function, but nearly all the code between the two would be the same!

A way that generalizes this is a function that takes in two arguments, the list and a one
argument function that will perform the operation we’d like. This function is known as
map. Below is an example of applying a cook function to a list of various food items:

>>> map (cook, ["cow", "potato", "chicken", "corn"])
["burger", "fries", "fried chicken", "popcorn"]

Functions as Return Values

Often, we will need to write a function that returns another function. One way to do
this is to define a function inner inside of a function outer, and outer will return the
function inner.

Some cases where we might do this is:

* need additional information (in the example below, we needed information of the
name of whom to greet)

* might need to track other variables that aren’t included

def maker-—-greeter (greeting) :
def greet (name) :
print (greeting, name)
return greet

>>> hello—-greeter = make—greeter ("Hello")
>>> greet ("Alina")
Hello Alina

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ENVIRONMENT DIAGRAMS AND HOFs Page 4

1. Implement make_skipper, which takes in a number n and outputs a function. When
this function takes in a number x, it prints out all the numbers between 0 and x
inclusive, skipping every nth number.
def make_skipper (n) :

wwwn

>>> a = make_skipper (2)
>>> a(5)

1

3

5

2. Implement apply_func which takes in a one argument function £ and returns a one
argument function. The returned function takes in a list 1st and applies £ to each
element in 1st.
def apply_func(f) :

>>> g = apply_func(abs)
>>> 1st = [1, -1, 2, -2]
>>> g (lst)

>>> 1st

(1, 1, 2, 2]

CSM 88 Spring 2021: Ada Hu and Tony Kam, with

Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ENVIRONMENT DIAGRAMS AND HOFs Page 5

WWPD

1. What does the bottom function call return?
>>> apple = 4
>>> def orange (apple) :
apple = 5
def plum(x):
return x *x 2
return plum

>>> orange (apple) ('hiii')

2. What is returned in line 1 and line 2? (Recommended: Draw an environment dia-
gram!)
>>> def f(g, f):
return g (f)

>>> def foo(g, h):
return h ~ g(h)

>>> def h(i):
return 5

>>> f(h, foo)

>>> f(h, foo(h, 3))

CSM 88 Spring 2021: Ada Hu and Tony Kam, with

Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ENVIRONMENT DIAGRAMS AND HOFs Page 6

Optional Challenging Problems!

1. Draw the environment diagram for evaluating the following code
def spain(japan, iran):
def world(cup, egypt):
return japan-poland
return iran(world(iran, poland))

def saudi (arabia):
return japan + 3

japan, poland = 3, 7
spain (poland+1l, saudi)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: ENVIRONMENT DIAGRAMS AND HOFs Page 7

2. Implement the function filter_out that takes in a list 1st and returns a one argu-
ment function, let’s arbitrarily call this g. g takes in a one argument function £ and
returns a pair — a new list containing only the elements of 1st that return True when
passed in to £, and a one argument function that behaves identically to g but operates
on the filtered list.
def filter out (lst):

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
(1,
>>>
>>>

(2]

#Here are a couple of helper functions
def less_than_4(x):
return x < 4
def divisible_by_2 (x):
return x % 2 == 0
g = filter_out([1l, 2, 3, 4, 51)
1st, b = g(less_than_4)
1st
2, 3]
lst, ¢ = b(divisible_by_2)
lst

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



	Environment Diagrams
	Higher Order Functions
	WWPD
	Optional Challenging Problems!

