
TREES, ITERATORS, AND GENERATORS

COMPUTER SCIENCE MENTORS CS 88

April 19th to April 24th

1 Trees

For the following problems, use this definition for the Tree class:

class Tree:
def __init__(self, label, branches=[]):

for b in branches:
assert isinstance(b, Tree)

self.label = label
self.branches = branches

def is_leaf(self):
return not self.branches

Notice that with this implementation we can mutate a tree using attribute assignment:

>>> t = Tree(3, [Tree(4), Tree(5)])
>>> t.label = 5
>>> t.label
5

1

CSM 88: TREES, ITERATORS, AND GENERATORS Page 2
1. What would Python display? If you believe an expression evaluates to a Tree object,

write Tree.
>>> t0 = Tree(0)
>>> t0.label

Solution: 0

>>> t0.branches

Solution: []

>>> t1 = Tree(0, [1, 2])#Is this a valid tree?

Solution: AssertionError #As the branches must be Tree objects

>>> t2 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])
>>> t2.branches[0]

Solution: Tree(1)

>>> t2.branches[1].branches[0].label

Solution: 3

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: TREES, ITERATORS, AND GENERATORS Page 3
2. Define a function square tree(t) that squares every value in the non-empty tree
t. You can assume that every value is a number.
def square_tree(t):

"""Mutates a Tree t by squaring all its elements."""

Solution:
t.label = t.label ** 2
for branch in t.branches:

square_tree(branch)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: TREES, ITERATORS, AND GENERATORS Page 4

3. Define the function factor tree which takes in a positive integer n and returns a
factor tree for n. In a factor tree, multiplying the leaves together is the prime factor-
ization of the root, n. See below for an example of a factor tree for n = 20.

def factor_tree(n):
"""
>>> factor_tree(20)
Tree(20, [Tree(2), Tree(10, [Tree(2), Tree(5)])])
>>> factor_tree(1)
Tree(1)

for i in ______________________:

if ________________________:

return Tree(_____, _____________________________)

Solution:
for i in range(2, n):

if n % i == 0:
return Tree(n, [Tree(i), factor_tree(n // i)])

return Tree(n)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: TREES, ITERATORS, AND GENERATORS Page 5

4. Write a function that returns true only if there exists a path from root to leaf that
contains at least n instances of elem in a tree t.
def contains_n(elem, n, t):

"""
>>> t1 = Tree(1, [Tree(1, [Tree(2)])])
>>> contains(1, 2, t1)
True
>>> contains(2, 2, t1)
False
>>> contains(2, 1, t1)
True
>>> t2 = Tree(1, [Tree(2), Tree(1, [Tree(1), Tree(2)])])
>>> contains(1, 3, t2)
True
>>> contains(2, 2, t2) # Not on a path
False
"""
if n == 0:

return True

elif ___:

return _____________________________________

elif ___:

return _____________________________________

else:

return _____________________________________

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: TREES, ITERATORS, AND GENERATORS Page 6

Solution:
if n == 0:

return True
elif t.is_leaf():

return n == 1 and t.label == elem
elif t.label == elem:

return True in [contains_n(elem, n - 1, b) for b in
t.branches]

else:
return True in [contains_n(elem, n, b) for b in

t.branches]

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: TREES, ITERATORS, AND GENERATORS Page 7

2 Iterators

Introduction to Iterators

An iterable is a data type that contains a collection of values which can be processed
one by one in order. Some examples are lists, tuples, strings, and dictionaries.

How do we iterate over an iterable? We use another type of object called an iterator.
We create an iterator for an iterable by calling iter on the iterable. It will then keep
track of its position in the iterable. Calling next on the iterator gives the current value
in the iterable and move the iterator forward until it has gone past the end of iterable
and a StopIteration error is produced.

You might wonder why this looks so similar to for loops. As a matter of fact, the for
loop uses an iterator. For any iterable you give it, the for loop implicitly creates an
iterator to go through its elements.
>>> a = [1, 2]
>>> a_iter = iter(a)
>>> next(a_iter)
1
>>> next(a_iter)
2
>>> next(a_iter)
StopIteration Error

Related functions:

range(start, end) returns an iterable

map(f, iterable) returns an iterator containing the values resulting from apply-
ing f to every element in the iterable

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: TREES, ITERATORS, AND GENERATORS Page 8

5. What would Python display? If an error occurs, write ”Error”. If a function is dis-
played, write ”Function”. If nothing is returned, write ”Nothing”. It might be easier
to draw the lists with the iterator as an arrow pointing to the location in the list
>>> lst = ['c', 's', 8, 8]
>>> next(lst)

Solution:
Error

>>> lst_iter = iter(lst)
>>> next(lst_iter)

Solution:
'c'

>>> next(lst_iter)

Solution:
's'

>>> next(iter(lst))

Solution:
'c'

>>> [x for x in lst_iter]

Solution:
[8, 8]

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: TREES, ITERATORS, AND GENERATORS Page 9

3 Generators

Introduction to Generators

A generator function is a special type of function that uses a yield statement instead of
a return statement. When a generator function is called, it returns an iterator. To the
right is an example of a generator function that creates an iterator for all the integers
0, 1, 2, 3, 4, 5, ...

The yield statement is like the return statement, except that yield causes the current
frame to be saved until next is called again. return simply closes the frame, as we
have always seen.

Including a yield statement in a function automatically makes a function a generator
function. When the function is first called, it returns a generator object instead of
executing the code. But when next is called on the generator, the code is executed
until the next yield
>>> def gen_nums():
... current = 0
... while True:
... yield current
... current += 1
>>> gen = gen_nums()
>>> gen
<generator object gen at ...>
>>> next(gen)
0
>>> next(gen)
1

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: TREES, ITERATORS, AND GENERATORS Page 10

6. What does the following code block output?
def foo():

a = 0
if a < 10:

print("Hello")
yield a
print("World")

for i in foo():
print(i)

Solution:
Hello
0
World

7. How can we modify foo so that it satisfies the following doctests?
>>> a = list(foo())
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Solution: Change the if to a while statement, and make sure to increment a.
This looks like:
def foo():

a = 0
while a < 10:

a += 1
yield a

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

	Trees
	Iterators
	Generators

