
LINKED LISTS AND EXCEPTIONS

COMPUTER SCIENCE MENTORS CS 88

April 12th to April 16th

1 Linked Lists

There are many different implementations of sequences in Python. Today, we’ll explore
the linked list implementation.

A linked list is either an empty linked list, or a Link object containing a first value and
the rest of the linked list.

To check if a linked list is an empty linked list, compare it against the class attribute
Link.empty:
if link is Link.empty:

print('This linked list is empty!')
else:

print('This linked list is not empty!')

Linked lists are a recursive data structure.
class Link:

empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

1

CSM 88: LINKED LISTS AND EXCEPTIONS Page 2

1. What will Python output? Draw box-and-pointer diagrams to help determine this.
>>> a = Link(1, Link(2, Link(3)))

Solution:
+---+---+ +---+---+ +---+---+
| 1 | --|->| 2 | --|->| 3 | / |
+---+---+ +---+---+ +---+---+

>>> a.first

Solution:
1

>>> a.first = 5

Solution:
+---+---+ +---+---+ +---+---+
| 5 | --|->| 2 | --|->| 3 | / |
+---+---+ +---+---+ +---+---+

>>> a.first

Solution: 5

>>> a.rest.first

Solution: 2

>>> a.rest.rest.rest.rest.first

Solution: Error: tuple object has no attribute rest (Link.empty has no rest)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LINKED LISTS AND EXCEPTIONS Page 3
>>> a.rest.rest.rest = a

Solution:
+---+---+ +---+---+ +---+---+

+->| 5 | --|->| 2 | --|->| 3 | --|--+
| +---+---+ +---+---+ +---+---+ |
| |
+-----------------------------------+

>>> a.rest.rest.rest.rest.first

Solution:
2

2. Given a number num, return a linked list containing the digits of num in reversed
order.
def reverse_digits(num):

"""
>>> num = 1234
>>> reverse_digits(num)
Link (4, Link (3, Link (2, Link (1))))
"""

if _____________________________________:

else:

Solution:
if num < 10:

return Link(num):
else:

return Link(num % 10, reverse_digits(num // 10))

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LINKED LISTS AND EXCEPTIONS Page 4

3. Implement the help method in the Mentor class. In this method, the mentor should
help all the students that need help (students is a linked list of Student in-
stances). If a student does not need help, the mentor should move on to the next
student. See the doctests for an example of how the help method should work!
class Student:

def __init__(self, name, needs_help):
self.name = name
self.needs_help = needs_help

class Mentor:
def __init__(self, name):

self.name = name

def help(self, students):
"""
>>> rahul = Student("Rahul", True)
>>> kaitlyn = Student("Kaitlyn", False)
>>> jessica = Student("Jessica", True)
>>> hetal = Student("Hetal", True)
>>> ada = Mentor("Ada")
>>> students = Link(rahul, Link(kaitlyn, Link(jessica,

Link(hetal))))
>>> ada.help(students)
Ada helped Rahul!
Ada helped Jessica!
Ada helped Hetal!
>>> ada.help(students) ## No one needs help anymore,

so nothing should be printed!
"""

Solution:
if students is not Link.empty:

curr = students.first
if curr.needs_help:

print(self.name + " helped " + curr.name +
"!")

curr.needs_help = False
self.help(students.rest)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LINKED LISTS AND EXCEPTIONS Page 5

2 Additional Linked List Problems

4. Write a function skip, which takes in a Link and returns a new Link with every
other element skipped.
def skip(lst):

"""
>>> a = Link(1, Link(2, Link(3, Link(4))))
>>> a
Link(1, Link(2, Link(3, Link(4))))
>>> b = skip(a)
>>> b
Link(1, Link(3))
>>> a
Link(1, Link(2, Link(3, Link(4)))) # Original is unchanged
"""
if ___:

__:

elif ___:

__

__

Solution:
if lst is Link.empty

return Link.empty
elif lst.rest is Link.empty:

return Link(lst.first)
return Link(lst.first, skip(lst.rest.rest))

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LINKED LISTS AND EXCEPTIONS Page 6

5. Write a function combine_two, which takes in a linked list of integers lnk and a
two-argument function fn. It returns a new linked list where every two elements of
lnk have been combined using fn.

def combine_two(lnk, fn):
"""
>>> lnk1 = Link(1, Link(2, Link(3, Link(4))))
>>> combine_two(lnk1, add)
Link(3, Link(7))
>>> lnk2 = Link(2, Link(4, Link(6)))
>>> combine_two(lnk2, mul)
Link(8, Link(6))
"""
if ______________________________________:

return ______________________________

elif ____________________________________

return ______________________________

combined = ______________________________

return __________________________________

Solution:
def combine_two(lnk, fn):

if lnk is Link.empty:
return Link.empty

elif lnk.rest is Link.empty:
return Link(lnk.first)

combined = fn(lnk.first, lnk.rest.first)
return Link(combined, combine_two(lnk.rest.rest, fn))

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LINKED LISTS AND EXCEPTIONS Page 7

3 Exceptions

Python code could raise exceptions when run, so it’s important to catch these exceptions
when necessary, instead of letting the exception propogate back to the user. To do this,
we can use a try...except block and allow the code to continue.
try:

<try suite>
except Exception as e:

<except suite>

We put the code that might raise an exception in the <try suite>. If an exception of
type Exception is raised, then the program will skip the rest of that suite and execute
the <except suite>. Generally, we want to be specify exactly which Exception we
want to handle, such as TypeError or ZeroDivisionError.

Notice that we can catch the exception as e. This assigns the exception object to the
variable e. This can be helpful when we want to use information about the exception that
was raised.

Some common exceptions you might encounter are:
AttributeError - This occurs when you try to reference an attribute that does not exist.
IndexError - Occurs when you try to access an index for a sequence that is out of range.
KeyError - Occurs when you try to access a key that does not exist in a dictionary.
TypeError - Occurs when an operation or function is applied to an object of inappropri-
ate type.
ZeroDivisionError - Occurs when you try to divide a number by zero.

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

CSM 88: LINKED LISTS AND EXCEPTIONS Page 8

1. You have seen that indexing a list with an index that is not contained in the list gen-
erates and exception, as does looking up a key that does not exist in a dictionary.
However, the get method of dict is more forgiving. If the key is not in the dictio-
nary it returns a value that you provide, defaulting to None. Use exception handling
in the function quiet get to obtain similar behavior for both lists and dictionaries.
def quiet_get(data, selector, missing=None):

"""Return data[selector] if it exists, otherwise missing.
>>> quiet_get([1,2,3], 1)
2
>>> quiet_get([1,2,3], 4)
>>> quiet_get({'a':2, 'b':5}, 'a', -1)
2
>>> quiet_get({'a':2, 'b':5}, 'd', -1)
-1
"""

Solution:
try:

return data[selector]
except (KeyError, IndexError):

return missing

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu

	Linked Lists
	Additional Linked List Problems
	Exceptions

