
OOP AND INHERITANCE

COMPUTER SCIENCE MENTORS CS 88

March 29th to April 2nd

1 Object Oriented Programming

1. What is a class?

Solution: A class is a mechanism used to create new user-defined data structures.
It contains data as well as the methods used to process that data.

2. What is an instance of a class?

Solution: An instance is an instantiation of the class with actual values, literally
an object of a specific class.

3. What is the purpose of the init method?

Solution: The init method initializes an instance of a class.

4. What is self?

Solution: In the init method, self refers to the newly created object; in other
class methods, it refers to the instance whose method was called. It’s a pointer to
the instance of the object.

1



CSM 88: OOP AND INHERITANCE Page 2

5. What would Python display? Write the result of executing the following code and
prompts. If nothing would happen, write ”Nothing”. If an error occurs, write ”Error”.

class Jedi:
lightsaber = "blue"
force = 25
def __init__(self, name):

self.name = name
def train(self, other):

other.force += self.force / 5
def __repr__(self):

return "Jedi " + self.name

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: OOP AND INHERITANCE Page 3
>>> anakin = Jedi("Anakin")
>>> anakin.lightsaber, anakin.force

Solution: (”blue”, 25)

>>> anakin.lightsaber = "red"
>>> anakin.lightsaber

Solution: ”red”

>>> Jedi.lightsaber

Solution: ”blue”

>>> obiwan = Jedi("Obi-wan")
>>> anakin.master = obiwan
>>> anakin.master

Solution: Jedi Obi-wan

>>> Jedi.master

Solution: Error

>>> obiwan.force += anakin.force
>>> obiwan.force, anakin.force

Solution: (50, 25)

>>> obiwan.train(anakin)
>>> obiwan.force, anakin.force

Solution: (50, 35)

>>> Jedi.train(obiwan, anakin)
>>> obiwan.force, anakin.force

Solution: (50, 45)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: OOP AND INHERITANCE Page 4
6. We now want to write three different classes, Postman, Client, and Email to sim-

ulate email. Fill in the definitions below to finish the implementation!
>>> postman = Postman() #Create a new Postman

>>> john = Client(postman, "John") #Create client named John

>>> rohan = Client(postman, "Rohan") #Create client named
Rohan

>>> john.compose("POG", "Rohan") #John sends an email to Rohan

>>> rohan.compose("CHAMP", "John") #Rohan sends an email to
John

>>> rohan.inbox[0].msg #Rohan's inbox
"POG"

>>>john.inbox[0].msg #John's inbox
"CHAMP"

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: OOP AND INHERITANCE Page 5
class Email:

"""Every email object has 3 instance attributes: the
message,

the sender (their name), and the addressee (the
destination's

name).
"""
def __init__(self, msg, sender, addressee):

Solution:
self.msg = msg
self.sender = sender
self.addressee = addressee

class Postman:
"""Each Postman has an instance attribute clients, which

is a
dictionary that associates client names with client

objects.
"""
def __init__(self):

self.clients = {}

def send(self, email):
"""Take an email and put it in the inbox of the client

it
is addressed to."""

Solution:
client = self.clients[email.addressee]
client.receive(email)

def register_client(self, client, client_name):
"""Takes a client object and client_name and adds it

to the
clients instance attribute.
"""

Solution:
self.clients[client_name] = client

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: OOP AND INHERITANCE Page 6
class Client:

"""Every Client has instance attributes name (which is
used

for addressing emails to the client), mailman (which is
used to send emails out to other clients), and inbox (a
list of all emails the client has received).
"""
def __init__(self, mailman, name):

self.inbox = []

Solution:
self.mailman = mailman
self.name = name
self.mailman.register_client(self, self.name)

def compose(self, msg, recipient):
"""Send an email with the given message msg to the

given
recipient."""

Solution:
email = Email(msg, self.name, recipient)
self.mailman.send(email)

def receive(self, email):
"""Take an email and add it to the inbox of this

client.
"""

Solution:
self.inbox.append(email)

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: OOP AND INHERITANCE Page 7
7. Fill in the classes Emotion, Joy, and Sadness below so that you get the following

output from the Python interpreter.

>>> Emotion.num
0

>>> joy = Joy()
>>> sadness = Sadness()
>>> emotion = Emotion()
>>> Emotion.num # number of Emotion instances created
3

>>> joy.power
5

>>> joy.catchphrase() # Print Joy's catchphrase
Think positive thoughts

>>> sadness.catchphrase() #Print Sad's catchphrase
I'm positive you will get lost

>>> sadness.power
5

>>> emotion.catchphrase()
I'm just an emotion.

>>> joy.feeling(sadness) # print "Together" if same power
Together

>>> sadness.feeling(joy)
Together

>>> joy.power = 7
>>> joy.feeling(sadness) # Print the catchphrase of the more

powerful feeling before the less powerful feeling
Think positive thoughts
I'm positive you will get lost

>>> sadness.feeling(joy)
Think positive thoughts
I'm positive you will get lost

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: OOP AND INHERITANCE Page 8
class Emotion

Solution:
class Emotion:

num = 0

def __init__(self):

Solution:
self.power = 5
Emotion.num += 1

def feeling(self, other):

Solution:
if self.power > other.power:

self.catchphrase()
other.catchphrase()

elif other.power > self.power:
other.catchphrase()
self.catchphrase()

else:
print("Together")

def catchphrase(self):

Solution:
print("I'm just an emotion.")

class Joy

Solution:
class Joy(Emotion):

def catchphrase(self):

Solution:
print("Think positive thoughts!")

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu



CSM 88: OOP AND INHERITANCE Page 9

class Sadness

Solution:
class Sadness(Emotion):

def catchphrase(self):

Solution:
print("I'm positive you will get lost.")

CSM 88 Spring 2021: Ada Hu and Tony Kam, with
Chi Tsai, Jack Wang, Kaitlyn Lee, Nikhil Sharma, Alina Trinh, Amit Bhat, Amit Sant, Lukas Chang, Nicholas Ng,
Simon Tsui, Tommy Joseph, Warren Gu


	Object Oriented Programming

