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1 Graph 101

1. Take a look at the following undirected graph.

(a) How many vertices are in this graph?

Solution: 6

(b) What is the degree of vertex B?

Solution: 3

(c) What is the total degree of this graph?

Solution: 16

(d) Consider the traversal A→ B → C → D → A. How would you categorize it (walk / cycle / simple path / tour)?

Solution: Walk, cycle, and tour. A simple path does not repeat vertices.

(e) Give an example of a simple path of length 4.

Solution: A→ B → C → D and many others.

(f) Is it possible to construct a traversal that is a tour but not a cycle from this graph (can go through vertices twice, but not
edges)? Why or why not?



Solution: No, because there are no vertices with even degree greater than 2 (which is needed to enter and exit a
vertex twice or enter, exit, and also start and end at the same place).

2. A complete bipartite graph is a bipartite graph where every possible edge between the two partitions is present. Draw a
complete bipartite graph with 6 vertices and 8 edges. What is the most edges you could have in a bipartite graph with 6
vertices? With 2n?

Solution: For 8 edges, the graph should have 4 vertices on one side and 2 on the other. The maximum number of edges
for 6-vertex bipartite graph is 9 edges. In general, for 2n vertices, the maximum will be n2.

The number of edges is maximized when there’s an equal number of vertices in both partitions. Any bipartite graph
on 2n vertices makes 2 partitions with size a and b , satisfying a + b = 2n . The maximum number of edges given a and b

is simply ab (every vertex in A has an edge to every vertex in B). This is maximized when a = b .

3. Which of these graphs have Eulerian tours?

(a) The complete graph on 5 vertices (K5).

Solution: Yes, every vertex is of degree 4. A graph in which every vertex has even degree has an Eulerian tour.

(b) The complete graph on 6 vertices (K6).

Solution: No, every vertex is of degree 5.

(c) The complete graph on 7 vertices (K7).

Solution: Yes, every vertex is of degree 6.

(d) The 3-dimensional hypercube.

Solution: No, every vertex is of degree 3.

(e) The 4-dimensional hypercube.

Solution: Yes, every vertex is of degree 4.

4. In this question we will work through the canonical example of buildup error. Recall that a graph is connected i� there is a
path between every pair of its vertices.

False Claim: If every vertex in an undirected graph has degree at least 1, then the graph is connected.

Proof. We use induction on the number of vertices n ≥ 1. let P (n) be the proposition that if every vertex in an n-vertex graph
has positive degree, then the graph is connected.

Base case: A graph with 1 vertex doesn’t have any positive-degree vertices so P (1) is true vacuously.
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Inductive Hypothesis: Assume P (n) holds. We want to show this implies P (n + 1).

Inductive Step: Consider an n vertex graph that has positive degree. By the asumption P (n), this graph is connected and there
is a path from every vertex to every other vertex. Now add a new vertex to create an n + 1 vertex graph. All that remains is
to check that there is a path from v to every other vertex. Suppose we add this vertex v to an existing vertex u . Since the
graph was previously connected, we already know there is a path from u to every other vertex in the graph. Therefore, when we
connect v to u , we know there will be a path from v to every other vertex in the graph. This proves the claim for P (n + 1). �

(a) Give a counter-example to show the claim is false.

Solution: Consider 2 pairs of vertices where each pair is connected by an edge. Each vertex has degree 1 but the two
pairs are distinct connected components and the graph is disconnected.

(b) Since the claim is false, there must be an error in the proof. Explain the error.

Solution: The proof is actually logically correct until the last sentence. The problem is that for P (n + 1) to be true,
we must show that every (n + 1)-vertex positive-degree graph is connected. Instead, the proof shows that every
(n + 1)-vertex positive-degree graph that can be constructed by adding a vertex of positive degree to an existing
(n)-vertex positive-degree graph is connected. Confirm that there is no way to build your counter-example graph by
the method in the proof.

More generally, this is an example of "build-up error". This error arises from a faulty assumption that every graph of
size n + 1 with some property can be built by adding a vertex to an n vertex graph that also has that property. This
assumption is correct in some cases, and incorrect in others.

In this class you will most likely only see build-up error in graph problems, but its important to understand that this
can occur anytime you are doing induction on the size of some mathematical structure (i.e. matrices).

(c) How can we avoid this mistake?

Solution: We want to consider all possible (n +1)-vertex graphs but we also want to apply our induction hypothesis.
The correct way to do this is to use a "shrink down, grow back" approach where we start with a graph on n + 1
vertices that we assume satisfies the property we care about, remove an arbitrary vertex, and show that the induction
hypothesis still holds for the new graph. Then add back the vertex and argue that P (n + 1) holds.

(d) What happens in the inductive step when you apply the fix?

Solution: Consider a graph on n + 1 vertices where every vertex has degree at least 1. Remove an arbitrary vertex
leaving an n-vertex graph. To apply the inductive hypothesis to this graph, we need every vertex to have positive
degree, but this is not guaranteed to happen when we remove an arbitrary vertex. Thus we are stuck, unable to apply
the inductive hypothesis.

Page 3



2 Planarity & Coloring
1. Show that any tree is 2-colorable.

Solution: We prove the result by induction on the number of vertices.
Base case: v = 1
The graph is a single point, which is clearly 2-colorable.
Inductive step: Suppose that the problem statement holds for v = k , with k ≥ 1. We show that the problem statement
holds for v = k + 1.
Let G be the tree of k + 1 vertices, and consider any vertex w in G . Remove w and all the edges connected to it, leav-
ing ≤ k connected components. These connected components must also be trees, since if the connected component
contained cycle, G would also contain a cycle. By the inductive hypothesis, each of these connected components is 2-
colorable. Now, add w back into the graph. w is connected to at most k other vertices. We can rotate the colorings in
each of the connected components such that each of the ≤ k verticesw is connected to is the same color, allowing us to
color w the second color. Thus, G is 2-colorable, as desired.
Thus, the induction is complete.

We can also prove the result by induction on the number of edges:
Base case: e = 0
The graph is single point, which is clearly k -colorable.
Inductive step: Suppose that the problem statement holds for e = k , with k ≥ 1. We show that the problem statement
holds for e = k + 1.
Let G be the graph of k + 1 edges, and consider any edge e in G . Remove e , leaving two connected components. These
connected components must also be trees, since if the connected component contained cycle, G would also contain a
cycle. By the inductive hypothesis, each of these connected components is 2-colorable. Now, add e back into the graph.
e connects two vertices, one from each connected component. We can rotate the colorings in each of the 2 connected
components such that the 2 vertices w connects are di�erent colors, giving a 2-coloring of G . Thus, G is 2-colorable, as
desired.
Thus, the induction is complete.

2. You are hosting a very exclusive party such that a guest is only allowed to come in if they are friends with you or someone
else already at the party. After everyone has showed up, you notice that there are n people (including yourself); each person
has at least one friend (of course), but no one is friends with everyone else. It is still quite a sad party, because among all the
possible pairs of people, there are only a total of n − 1 friendships. You want to play a game with two teams, and in order to
kindle new friendships, you want to group the people (including yourself) such that within each team, no one is friends with
each other. Is this possible? (Hint: How might the previous question be useful?)

Solution: Represent people as vertices and friendships between them as edges on a graphG . Based on the circumstances
surrounding the party’s guests, we know that G is connected (every new friend/vertex needs to be connected to a vertex
within the existing graph) and there are a total of n − 1 edges (friendships). G is, in fact, a tree!

Now, we want to separate the partygoers into 2 groups such that no two people from the same group are friends. This
can be modelled in G by partitioning the vertices into 2 groups such that the only edges are between the groups, not
within. Thus, we have reduced the problem to showing a tree G is bipartite. But, we just showed that trees can always be
2-colored! We can just divide the vertices in 2 sets based on what color they are. Thus, all trees are also bipartite.

3. Two knights are placed on diagonally opposite corners of a chessboard, one white and the other black. The knights take turn
moving as in standard chess, with white moving first.

(a) Let every square on a chessboard represent a vertex of a graph, with edges between squares that are a knight’s move
away. Describe a 2-coloring of this graph.
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Solution: Color white squares white, and black squares black, in a checkerboard pattern. Since knights always go
from a white square to a black one and vice versa, this forms a 2-coloring.

(b) Show that the black knight can never be captured, even if it cooperates with the white knight.

Solution: At the end of the black knight’s move, the two knights are on the same color. Thus, when the white knight
moves, it lands on the opposite color of the black knight, and so can never capture the black knight.

4. Consider a group of 6 friends sitting at a round table. Any one person is friends with the two individuals next to them and
the person sitting directly across from them. Consider the graph where each individual is a vertex and an edge exists between
person u and v if and only if u and v are friends. Prove that this graph is non-planar.

Solution: Consider the subgraph of this graph on 6 vertices, partitioned into the left side of the three vertices 0, 2, 4 and
the right side of 1, 3, 5. Notice that there is an edge from every node on the left side to the right side and vice versa,
creating a K3,3 subgraph. Since this graph contains a K3,3 subgraph.

3 Hypercubes
1. Austin has n ≥ 2 lightbulbs in a row, all turned o�. Every second Austin performs amove, where Austin either turns a lightbulb

on or turns a lightbulb o�. Show that for any n , there is a a sequence of moves that Austin can make such that each possible
configuration of lightbulbs being on or o� has occurred exactly once, and such that the last move causes all the lightbulbs to
be o�.

(a) Each of the n lightbulbs is either on or o�. How should we represent the lightbulb states mathematically?

Solution: A n-length bitstring. The i t h bit represents if the i t h bulb is on or o�.

(b) Frame the problem in terms of hypercubes.

Solution: In a n dimensional hypercube H , we can label each vertex with a n-length bitstring where vertices are
connected only if their strings di�er by exactly one bit. Each move switches exactly one lightbulb, or one bit. This
corresponds to walking across an edge from one vertex to another. Starting from no lit lightbulbs and making moves
to go through all configurations before ending at no lit lightbulbs corresponds to a Hamiltonian cycle on H , a cycle
that visits every vertex (and only once).

(c) Solve the problem by showing a property of hypercubes.

Solution: We show that a Hamiltonian cycle exists for all n ≥ 2 dimensional hypercubes by induction.
Base case: n = 2
The graph is a square with vertices V = {00, 01, 11, 10}. Note that {(00, 01), (01, 11), (11, 10), (10, 00)} is a
Hamiltonian cycle.
Inductive step: Suppose that the problem statement holds for n = k , with k ≥ 1. We show that the problem
statement holds for n = k + 1.
Let H be our k + 1-dimensional hypercube. Define H0 to be the k -dimensional hypercube constructed by all the
vertices in H with first bit 0, and H1 to be the k -dimensional hypercube formed by all the vertices in H with first bit
1. By the inductive hypothesis, there is a Hamiltonian cycle of H0 starting at 00 . . . 0. Let 00 . . . 010 . . . 0 be the last
vertex in the Hamiltonian cycle before 00 . . . 0. Similarly, by the inductive hypothesis, there is a Hamiltonian cycle of
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H1 starting at 10 . . . 0, where 10 . . . 010 . . . 0 is the last vertex in the Hamiltonian cycle before 10 . . . 0.
Now we construct a new cycle of H . Our new Hamiltonian cycle takes the path from 00 . . . 0 to 00 . . . 010 . . . 0 as
defined by the Hamiltonian cycle in H0, traverses the edge from 00 . . . 010 . . . 0 to 10 . . . 010 . . . 0 and , takes the
path from 10 . . . 010 . . . 0 to 10 . . . 0 as defined by traversing the Hamiltonian cycle in H1 in reverse, then traversing
the edge from 10 . . . 0 to 00 . . . 0. This new cycle traverses all the vertices (by the inductive hypothesis), so it is a
Hamiltonian cycle of H , as desired.
Thus, the induction is complete.

2. You wish to color the edges of a n-dimension hypercube, such that edges that share a vertex are di�erent colors. (Note: This
isn’t the problem in disc2b, where you colored vertices so that vertices that share an edge are di�erent colors!) Prove that n
colors is necessary and su�cient. (You can do this with n colors but not n − 1.)

Solution: Consider the bitwise representation of each vertex. Every vertex is connected to n others, so it is impossible to
use less than n colors; otherwise each vertex will have multiple edges with the same color.

Color all edges which go between vertices 0xxxx ... and 1xxxx .. one color, with xxxx ... ranging over all sequences of
n − 1 bits. None of these edges share a vertex, so our requirement is preserved. Furthermore, we can do the same with
each "position" in the bitwise representation; thus, edges connecting vertices x0xxx ... to x1xxx ... will share a second
color, edges connecting vertices xx0xx ... to xx1xx ... will share a third color, and so on. This overall uses n colors, and
encompasses all edges in the hypercube, while ensuring that edges that share a vertex are di�erent colors. Thus, this
forms an n coloring of the edges.

Do you see the proof by induction hidden in this proof? Doing this was the same as making a n dimension hypercube by
starting with a n − 1 dimension hypercube and joining it to an exact copy of itself (with all the same edge colorings) using
edges of a new color.
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