
Rigid Body Transformations

1. Preserves Length (∀p, q ∈ R3), ||g(p)− g(q)|| = ||p− q||

• ∥Rab(pb − pa)∥2 = (·)⊤(·) = ∥pb − pa∥2

2. Preserves relative Orientations between vectors:

• (∀p, q ∈ R3), g(p)× g(q) = g(p× q)

3. Preserves coordinate frames

• Rigid body transformations preserve inner products

– x · y = g(x) · g(y)

• Rotations are rigid body transformations

• qa = Rabqb is transferring from B to A

• gab means present frame B in frame A (using A’s basis to
describe B)

Law of Cosines: c2 = a2 + b2 − 2ab cos(θC)
where a, b, c are side lengths of the triangle.

eA =

∞∑
n=0

An

n!
= I+A+

1

2!
A2 + · · ·

(eA)⊤ = e(A
⊤) = e−A (if A is skew symmetric)

eA+B = eAeB for any square matrices A, B such that AB = BA

g is any invertible square matrix of the same size as A. Then

egAg−1
= geAg−1. Av⃗ = λv⃗ =⇒ eAv⃗ = eλv⃗. det(A) = det(AT)

det(eA) = eλ1eλ2 · · · eλn = eλ1+λ2+λn = etrA =⇒ ∃ exp(·)−1.

(AB)T = BTAT , (AB)−1 = B−1A−1, (A+B)T = (AT +BT)
All matrices are associative: A(BC) = (AB)C but not necessarily
commutative: AB ̸= BA. det(R) = ±1, ∥Ru∥ = ∥u∥, for orthog
matrix R, u⃗. (eA)−1 = e−A

dx
dt

= ax(t), for t ≥ 0, a ∈ R, assuming the initial condition

x(0) = x0. And x(t) > 0∀t ∈ R. ∴ x(t) = x0eat

For any linearly independent set of vectors, we can pick a basis for
those vectors which makes the set orthonormal.
Determinants are continuous. Plug in an easy value like 0 to
compute at 1 point, then can conclude about other points.

Solving Matrix Diff eq’s:

dx
dt

= Ax(t)

1. Find eigenvalues via sols to det(A− λI) = 0.

2. Find eigenvectors by solving Av⃗ = λv⃗ for eigvec v⃗.

3. Diagonalize A = VΛV−1, where V =
[
v⃗1 v⃗1

]
4. Let x̃ ≜ V −1x =⇒ dx̃

dt
= Λx̃(t)

5. Each row reduces to a scalar diffeq with known solution!

Submultiplicative if for all A,B ∈ Rn×n, ∥AB∥ ≤ ∥A∥ · ∥B∥.
Frobenius Norm: ∥A∥F =

√
Trace (AAT) is submultiplicative. The

trace of any square matrix = sum of its eigenvalues.

Cross product formula:

a⃗× b⃗ =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =
a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

Symmetric Matrix: A = AT ; Skew-Symmetric Matrix: A = −AT

Diagonal elements must be 0 (otherwise like 5 cannot equal -5)

Rotation Matrices:

Transformation Matrices are valid Rotation Matrices if:

1. R⊤R = RR⊤=I

2. det(R) = +1, det(RTR) = det(RT) det(R) = det(R)2 = 1

Examples: RX(θ) =

1 0 0
0 cos (θ) − sin (θ)
0 sin (θ) cos (θ)

 = ex̂θ, RY (θ) = cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

 , RZ(θ) =

cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

Writing vectors in frame B and frame A:
vb = vbxxb + vbyyb + vbzzb
va = vbxxab + vbyyab + vbzzab
Thus va = Rabvb
RPY (right to left, fixed frame) vs Euler (left to right, uses new
axes)
Definition of a Group:

1. Closure:g1, g2 ∈ G, g1 · g2 ∈ G

2. Identity: ∃I ∈ SO(3) : R · I ∈ SO(3), R · I = I ·R = R

3. Inverse element: ∀R ∈ SO(3), R−1 = RT ,
R−1 ·R = I = R ·R−1

4. Associativity: R1(R2R3) = (R1R2)R3

Common Groups:

SO(3) := {R ∈ R3x3 | RTR = I, det(R) = 1} ⊆ R3×3

so(3) := {A ∈ R3x3 | A = −AT } ⊂ R3×3 = skew-symmetric mat.’s

SE(3) := {(R, p)|R ∈ SO(3), p ∈ R3}
= Set of all pairs of rotation matrices and translations

se(3) :=

{
ξ̂ =

[
ω̂ v
0 0

]
|ω̂ ∈ so(3), v ∈ R3

}
⊂ R4×4

= set of all twist matrices ξ̂

g ∈ SE(3) =

[
R p

0⃗⊤ 1

]
∈ R4×4 = set of all rigid body

transformations where R ∈ SO(3) and p ∈ R3.

g−1 =

[
RT −RT p

0⃗⊤ 1

]
∈ SE(3), ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

Hat map: ∧ : R3 → so(3).
Alternatively a× b = a∧b
Hat map properties: For all R ∈ SO(3) and all v, w ∈ R3 the
following hold:

RŵRT = (Rw)∧

R(v × w) = (Rv)× (Rw)

ω2
1 + ω2

2 + ω2
3 = 1 ⇐⇒ ∥ω∥ = 1, ω̂T = −ω̂

det(A) = (−1)n det(A), odd-dimensioned skew-sym have det = 0

Rodrigues’ formula (∥ω∥ = 1):

• eω̂θ = I + ω̂ sin θ + ω̂2(1− cos θ)

• ω̂2 = ωωT − I, ω̂3 = −ω̂, ω̂4 = −ω̂2, ω̂5 = −ω̂

Homogeneous Representation: g ∈ SE(3)

• Points: q =
[
q1 q2 q3 1

]⊤
• Vectors: v⃗ = p− q =

[
v1 v2 v3 0

]⊤

Exponentials of skew symmetric matrices produce elements of
SO(3): Given any unit vector ω ∈ R3 and any scalar θ ∈ R:
eω̂θ ∈ SO(3). XYZ 7→ Roll Pitch Yaw.
Euler’s Theorem: Any rotation or orientation R ∈ SO(3) is
equivalent to a rotation about an axis ω through an angle θ.

Twist Coord: ξ ∈ R6 where ξ =

[
v
ω

]
where ω ∈ R3 is the axis of rot.

Note that the constant vector v ̸= linear velocity (as linear velocity
is always changing) although it includes info about it
Cases:

1. General Screw Motion == Screw Joint

• v = −ω × q + hω, where h is pitch = trans
rot

= d
θ
and q is

some point from some other reference frame

• ξ =

[
−ω × q + hω

ω

]
2. Pure Rotational Motion == Revolute Joint

• ξ =

[
−ω × q

ω

]
, v = −ω × q as h = 0 =⇒ hω = 0

3. Pure Translational Motion == Prismatic Joint

• ξ =

[
v
0

]
, v = direction of screw motion, ω = 0

For 1 and 2, ω is a unit vector For 3, v is a unit vector
Chasles’ Theorem: Every rigid body motion may be represented by
a screw motion – a rotation about an axis followed by a translation
parallel to that axis.
The transformation g corresponding to S has the effect on point p:

• gp = q + eω̂θ(p− q) + hθω

Joint Space:

• Set of all possible joint positions for our basic joints

• Q = S1 × S1 ×R where “x” is the cartesian set product

• Q = θ1xθ2xθ3

Fwd kinematics mapping: gst(θ) : Q → SE(3). Expo Coords: (ξ, θ)

Wedge: ξ̂ =
ˆ[v
w

]
=

[
ω̂ v
0 0

]
1. eξ̂θ =

[
I vθ
0 1

]
, if ω=0

2. eξ̂θ =

[
eω̂θ (I − eω̂θ)(ω×v) + ωωT vθ
0 1

]
(Twist) =[

eω̂θ (I − eω̂θ)q + hθω
0 1

]
(Screw), if ω ̸=0, ||ω|| = 1

The degrees of freedom (DOF) of a robot arm are the number of
joints in the robot which we may independently move.
Files Breakdown:

• ∼/.bashrc: sets environment variables when running script to
find ROS-specific things

• Build: stores information for building packages

• Devel: automatically generated files (e.g. header files)

• Src: Source code for packages (includes CMakeList.txt,
Package.xml, include files)

• CMakeList.txt: input to cmake build system for building
software packages

• Package.xml: metadata about the package
contents/configuration and dependencies

• Include: C++ include headers

Essential Commands:

• catkin make, then source devel/setup.bash

• MUST RUN AFTER DONE WITH LAB: ctrl+C out of all
terminals, then pkill -u [username]

• roscd, rosls, roscore starts a server that all ROS nodes use
to communicate

Nodes: Processes that compute

• an executable that uses ROS to communicate w/ other nodes

• rosnode info /node name; No cd: rosrun pkg script.py

args; rospy.init node(node name, anon: unique name)

• package.xml: build depend, run depend metadata

• rospack find package name

• sourcing adds path of package to ROS PACKAGE PATH

• in /src, catkin create pkg <package name>

<list of dependencies>

• lauch file specifies several nodes to launch: roslaunch
package name launch file.launch

Topics: Queues over which nodes exchange messages

• Nodes can publish messages to a topic as well as subscribe to
a topic to receive messages

• rostopic echo /turtle1/cmd vel, echo the message that a
node is publishing to the topic /turtle1/cmd vel; this
creates a new node in cqt graph

• /teleop turtle publishes a message on topic
/turtle1/cmd vel, and the node /turtlesim subscribes to
the topic to receive the message.

Services:

• service, request, and response types

• rosservice type /clear check the type of /clear service

• specific datatypes and args of requests and responses can be
found in /srv/service.srv file

• rosservice call [service] [arguments] use rosservice

call command to run

Message Types (ex. std msgs/String):

• a ROS datatype used to exchange data between nodes

• variables and types in /msg/Message.msg of package; need to
update package.xml and CMakeLists.txt after creation

• usage: from package name.msg import message name. Try to
make message name different from package name

Publisher: Node that sends message to a topic

• define talker(): method which contains the node’s main
functionality

• pub = rospy.Publisher(‘[topicName]’, [msgType],

queueSize = 10)

• r = rospy.Rate(10): publish at 10Hz publishing rate

• while not rospy.isShutdown():

pub.publish(pubString)

r.sleep()

Subscriber: Node that receives message from a topic

• def callback(message): called whenever this node receives a
message on the subscribed topic, received message is 1st
argument

• listener(): contains node’s main functionality

• rospy.Subscriber([topicName], [MsgType], callback)

• rospy.spin()

Server:

• rospy.Service(

‘/{}/patrol’.format(sth = sys.argv[1]), # Service name
Patrol, # Service type
patrol callback) # Service callback

• rospy.wait for service(<service name>)

• serv = rospy.ServiceProxy(’service name’,’service

type’) serv(<args>) creates a proxy serv that we can send
requests to

Client:

• rospy.wait for service(’[service name]’)

• patrol proxy = rospy.ServiceProxy(

[service name](‘/xx/xx’), [service type](Patrol))

Mobile Robots TF:

rosrun tf tf_echo <source frame> <target frame> prints

info about a transformation between the two frames

tfBuffer = tf2_ros.Buffer()

tfListener = tf2_ros.TransformListener(tfBuffer)

trans = tfBuffer.lookup_transform(turtlebot_frame,

goal_frame, rospy.Time())

control_command.linear.x = K1*trans.transform.translation.x

control_command.angular.z= K2*trans.transform.translation.y

Computer Vision
Example:

K = I, λ1x1 = KX1, λ2x2 = KX2 =⇒ λ1x1 = X1, λ2x2 = X2

g21 = (R, T), X2 = RX1 + T

normalized: means the focal length is 1 Grayscale: 0 (pure
black) and 255 (pure white) Thresholding: binary image (not
grayscale) with 1’s (white) representing our foreground or object of
interest, and 0’s (black) Two-View Geometry: there’s the

epipolar constraint which has (x′)TEx = 0, E = T̂R, E is the
essential matrix, T and R are applied on x to get x’, this allows us
to get depth
homography: apply affine transformation to an image t ochange
perspectives (can straighten a pic), needs at least 4 pairs of points
to do this
Launchfile format:

<launch>

<param name="marker_size" default="16.5">

<node>

<node name="" pkg="" type="" output="">

<param name="" type="" value="$(arg marker_size)">

</node>

</launch>

Parameter server: ROS parameters are key-value pairs that
ROS allows you to specify when launching a nodes that may be
queried by those nodes at run-time.

Adjoints

• (Adg)−1 = Adg−1 for all g ∈ SE(3)

• Adg1g2 = Adg1Adg2 for all g1, g2 ∈ SE(3)

Action File .action file that specifics the data of all the action
servers movegroup action server sends out feedback and result msgs
while the action client recives these msgs and sends out a goal msg
Velocities

• qa(t) = gabqb =⇒ q̇a(t) = ġabqb =⇒ vqa (t) = ġabg
−1
ab qa

• Circle Method: for vs measure the length from joint to
A-frame,this is your radius, radius * theta dot = velocity
(make a circle by rotating the line), for vb measure length
from joint to body frame instead make a circle by rotating
this radius

Dynamics

T (θ, θ̇) =

n∑
i=1

Ti(θ, θ̇) =
1

2
θ̇T (

n∑
i=1

JbT

i Mb
i J

b
i)θ̇

M(θ) = MT (θ), θ̇TM(θ)θ̇ ≥ 0, θ̇TM(θ)θ̇ ⇐⇒ θ̇ = 0

V (θ) =

n∑
i=1

mighi(θ)

• Ṁ − 2C is skew-symmetric

• when computing Ji remember the correct adjoints and ξi for
each jacobian, some jacobians might have cols with 0s cause
not enough joints

• Coriolis matrix represents fictional forces caused by rotating
basis vectors, (i.e. coriolis and centrifugal force)

• when picking generalized state pick something and
freeze it, if anything else in the system is still able to
move then pick a variable that expresses that and
freeze it as well, if everything is frozen then you’re
good to go!, x found with springs a lot, θ most definitely
for rotations

• Task Space Dynamics: if
x = f(θ) =⇒ ẋ = δf

δθ
θ̇ = Jθ̇ =⇒ ẍ = Jθ̈ + J̇ θ̇ and

Γ = JTF , F is the force we can control to move the tool
F = M̃ẍ+ C̃ẋ+ Ñ (you then solve this the same way as
computed torque but using x instead of θ) for ex:
F = M̃(ẍd − kpex − kdėx)TO GET FULL

EXPRESSION ISOLATE θ̈ IN JOINT SPACE
DYNAMICS AND PLUG IT INTO the equation for
ẍ

Control

• Joint-Space Control: given: θd(t) desired joint trajectory
goal: θ(t) → θd(t) s.t. limt→∞ ∥θd(t)− θ(t)∥ = 0

• Task-Space Control: given: gdST (t) desired tool trajectory,

goal: design joint torque τ s.t. limt→∞gST (t) → gdST (t)
USE computed-torque control!

• Computed-Torque Control: Choose Γ s.t. θ(t) → θd(t) as
t → ∞ can be done by having the scenario

• We want ë+Kdė+Kpe = 0, e = (θd(t)− θ(t) this can be
done by picking a Γ s.t.
M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ)− Γ = ë+Kdė+Kpe = 0

• Commonly found that
Γ = M(θ)θ̈d + C(θ, θ̇)θ̇ +N(θ) +M(θ)(−Kpe−Kdė)[

ė
ë

]
=

[
0 I

−Kp −Kd

] [
e
ė

]
=⇒ ẋ = Ax

• if the real parts of the eigenvalues of A are less than 0 then
that implies e(t) → 0, t → ∞, this is Feedback Linearizing
Control

• if Kd and Kp are diagonal matrices then they need to be
positive definite i.e. zTMz > 0 for all real-valued vectors z,
aka the eigenvals of Kp,Kd are all positive

• when given ẍ+ bẋ+ c = 0 the characteristic eqn. is
λ2 + bλ+ c = 0, x(t) = c1eλ1t + c2eλ2t

• Gravity Compensation Control: want to hold an obj
steadily against gravity, if θ̇=̃0 =⇒ Γ = N(θ)

• Gravity Compensation + PD: Γ = N(θ)−Kpe−Kdė

• PID: proportional: does most of the work to pull state to
desired traj, derivative: dampens proportional, prevents
oscillation and overcorrection, allows for convergence,
integral: corrects steady-state error caused by constant
forces like g, can be thought as supplying force to keep error
at 0

• Model Based Control: u = uff + ufb

	Rigid Body Transformations
	Solving Matrix Diff eq's:
	Rotation Matrices:
	Rodrigues' formula (|w|=1):

	Computer Vision
	Adjoints
	Control

