Rigid Body Transformations

1. Preserves Length $\left(\forall p, q \in \mathbb{R}^{3}\right),\|g(p)-g(q)\|=\|p-q\|$

$$
\text { - }\left\|R_{a b}\left(p_{b}-p_{a}\right)\right\|^{2}=(\cdot)^{\top}(\cdot)=\left\|p_{b}-p_{a}\right\|^{2}
$$

2. Preserves relative Orientations between vectors:

- $\left(\forall p, q \in \mathbb{R}^{3}\right), g(p) \times g(q)=g(p \times q)$

3. Preserves coordinate frames

- Rigid body transformations preserve inner products

$$
-x \cdot y=g(x) \cdot g(y)
$$

- Rotations are rigid body transformations
- $q_{a}=R_{a b} q_{b}$ is transferring from B to A
- $g_{a b}$ means present frame B in frame A (using A's basis to describe B)
Law of Cosines: $c^{2}=a^{2}+b^{2}-2 a b \cos \left(\theta_{C}\right)$
where a, b, c are side lengths of the triangle.
$e^{\mathbf{A}}=\sum_{n=0}^{\infty} \frac{\mathbf{A}^{n}}{n!}=\mathbf{I}+\mathbf{A}+\frac{1}{2!} \mathbf{A}^{2}+\cdots$
$\left(e^{\mathbf{A}}\right)^{\top}=e^{\left(\mathbf{A}^{\top}\right)}=e^{-\mathbf{A}}$ (if A is skew symmetric)
$e^{A+B}=e^{A} e^{B}$ for any square matrices \mathbf{A}, \mathbf{B} such that $\mathbf{A B}=\mathbf{B A}$ g is any invertible square matrix of the same size as \mathbf{A}. Then $e^{g \mathbf{A} g^{-1}}=g e^{\mathbf{A}} g^{-1} . \quad \mathbf{A} \vec{v}=\lambda \vec{v} \Longrightarrow e^{\mathbf{A}} \vec{v}=e^{\lambda} \vec{v} . \quad \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ $\operatorname{det}\left(e^{\mathbf{A}}\right)=e^{\lambda_{1}} e^{\lambda_{2}} \cdots e^{\lambda_{n}}=e^{\lambda_{1}+\lambda_{2}+\lambda_{n}}=e^{\operatorname{tr} \mathbf{A}} \Longrightarrow \exists \exp (\cdot)^{-1}$. $(A B)^{T}=B^{T} A^{T},(A B)^{-1}=B^{-1} A^{-1},(A+B)^{T}=\left(A^{T}+B^{T}\right)$ All matrices are associative: $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$ but not necessarily commutative: $A B \neq B A . \quad \operatorname{det}(R)= \pm 1,\|R u\|=\|u\|$, for orthog matrix $\mathrm{R}, \vec{u} . \quad\left(e^{\mathbf{A}}\right)^{-1}=e^{-\mathbf{A}}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=a x(t)$, for $t \geq 0, a \in \mathbb{R}$, assuming the initial condition $x(0)=x_{0}$. And $x(t)>0 \forall t \in \mathbb{R} . \therefore x(t)=x_{0} e^{a t}$
For any linearly independent set of vectors, we can pick a basis for those vectors which makes the set orthonormal.
Determinants are continuous. Plug in an easy value like 0 to compute at 1 point, then can conclude about other points.

Solving Matrix Diff eq's:

$\frac{\mathrm{d} x}{\mathrm{~d} t}=\mathbf{A} x(t)$

1. Find eigenvalues via sols to $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$.
2. Find eigenvectors by solving $\mathbf{A} \vec{v}=\lambda \vec{v}$ for eigvec \vec{v}.
3. Diagonalize $\mathbf{A}=\mathbf{V} \Lambda \mathbf{V}^{-1}$, where $V=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{1}\end{array}\right]$
4. Let $\tilde{x} \triangleq V^{-1} x \Longrightarrow \frac{\mathrm{~d} \tilde{x}}{\mathrm{~d} t}=\boldsymbol{\Lambda} \tilde{x}(t)$
5. Each row reduces to a scalar diffeq with known solution! Submultiplicative if for all $A, B \in \mathbb{R}^{n \times n},\|A B\| \leq\|A\| \cdot\|B\|$. Frobenius Norm: $\|A\|_{F}=\sqrt{\operatorname{Trace}\left(A A^{T}\right)}$ is submultiplicative. The trace of any square matrix $=$ sum of its eigenvalues.
Cross product formula:
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}i & j & k \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\left[\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right]$
Symmetric Matrix: $A=A^{T}$; Skew-Symmetric Matrix: $A=-A^{T}$ Diagonal elements must be 0 (otherwise like 5 cannot equal -5)

Rotation Matrices:

Transformation Matrices are valid Rotation Matrices if:

1. $\mathbf{R}^{\top} \mathbf{R}=\mathbf{R R}^{\top}=\mathbf{I}$
2. $\operatorname{det}(R)=+1, \operatorname{det}\left(R^{T} R\right)=\operatorname{det}\left(R^{T}\right) \operatorname{det}(R)=\operatorname{det}(R)^{2}=1$

Examples: $R_{X}(\theta)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right]=e^{\hat{x} \theta}, R_{Y}(\theta)=$ $\left[\begin{array}{ccc}\cos (\theta) & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ -\sin (\theta) & 0 & \cos (\theta)\end{array}\right], R_{Z}(\theta)=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$
Writing vectors in frame B and frame A:
$v_{b}=v_{b x} x_{b}+v_{b y} y_{b}+v_{b z} z_{b}$
$v_{a}=v_{b x} x_{a b}+v_{b y} y_{a b}+v_{b z} z_{a b}$
Thus $v_{a}=R_{a b} v_{b}$
RPY (right to left, fixed frame) vs Euler (left to right, uses new axes)
Definition of a Group:

1. Closure: $g_{1}, g_{2} \in G, g_{1} \cdot g_{2} \in G$
2. Identity: $\exists I \in S O(3): R \cdot I \in S O(3), R \cdot I=I \cdot R=R$
3. Inverse element: $\forall R \in S O(3), R^{-1}=R^{T}$,
$R^{-1} \cdot R=I=R \cdot R^{-1}$
4. Associativity: $R_{1}\left(R_{2} R_{3}\right)=\left(R_{1} R_{2}\right) R_{3}$

Common Groups:

$S O(3):=\left\{R \in \mathbb{R}^{3 x 3} \mid R^{T} R=I, \operatorname{det}(R)=1\right\} \subseteq \mathbb{R}^{3 \times 3}$
so(3) $:=\left\{A \in \mathbb{R}^{3 x 3} \mid A=-A^{T}\right\} \subset \mathbb{R}^{3 \times 3}=$ skew-symmetric mat.'s
$S E(3):=\left\{(R, p) \mid R \in S O(3), p \in \mathbb{R}^{3}\right\}$
$=$ Set of all pairs of rotation matrices and translations
$s e(3):=\left\{\left.\hat{\xi}=\left[\begin{array}{cc}\hat{\omega} & v \\ 0 & 0\end{array}\right] \right\rvert\, \hat{\omega} \in \operatorname{so}(3), v \in \mathbb{R}^{3}\right\} \subset \mathbb{R}^{4 \times 4}$
$=$ set of all twist matrices $\hat{\xi}$
$g \in S E(3)=\left[\begin{array}{rr}R & p \\ \overrightarrow{0}^{\top} & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}=$ set of all rigid body
transformations where $R \in S O(3)$ and $p \in \mathbb{R}^{3}$.
$g^{-1}=\left[\begin{array}{cc}R^{T} & -R^{T} p \\ \overrightarrow{0}^{\top} & 1\end{array}\right] \in S E(3), \hat{\omega}=\left[\begin{array}{ccc}0 & -\omega_{3} & \omega_{2} \\ \omega_{3} & 0 & -\omega_{1} \\ -\omega_{2} & \omega_{1} & 0\end{array}\right]$
Hat map: $\wedge: \mathbb{R}^{3} \rightarrow \operatorname{so}(3)$.
Alternatively $a \times b=a^{\wedge} b$
Hat map properties: For all $R \in S O(3)$ and all $v, w \in \mathbb{R}^{3}$ the following hold:

$$
\begin{aligned}
R \hat{w} R^{T} & =(R w)^{\wedge} \\
R(v \times w) & =(R v) \times(R w)
\end{aligned}
$$

$\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}=1 \Longleftrightarrow\|\omega\|=1, \hat{\omega}^{T}=-\hat{\omega}$
$\operatorname{det}(A)=(-1)^{n} \operatorname{det}(A)$, odd-dimensioned skew-sym have $\operatorname{det}=0$
Rodrigues' formula ($\|\omega\|=1$):

- $e^{\hat{\omega} \theta}=I+\hat{\omega} \sin \theta+\hat{\omega}^{2}(1-\cos \theta)$
- $\hat{\omega}^{2}=\omega \omega^{T}-I, \hat{\omega}^{3}=-\hat{\omega}, \hat{\omega}^{4}=-\hat{\omega}^{2}, \hat{\omega}^{5}=-\hat{\omega}$

Homogeneous Representation: $g \in S E(3)$

- Points: $q=\left[\begin{array}{llll}q_{1} & q_{2} & q_{3} & 1\end{array}\right]^{\top}$
- Vectors: $\vec{v}=p-q=\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & 0\end{array}\right]^{\top}$

Exponentials of skew symmetric matrices produce elements of $S O(3)$: Given any unit vector $\omega \in \mathbb{R}^{3}$ and any scalar $\theta \in \mathbb{R}$: $e^{\hat{\omega} \theta} \in S O(3) . \mathrm{XYZ} \mapsto$ Roll Pitch Yaw.
Euler's Theorem: Any rotation or orientation $R \in S O(3)$ is equivalent to a rotation about an axis ω through an angle θ.
Twist Coord: $\xi \in \mathbb{R}^{6}$ where $\xi=\left[\begin{array}{c}v \\ \omega\end{array}\right]$ where $\omega \in \mathbb{R}^{3}$ is the axis of rot. Note that the constant vector $v \neq$ linear velocity (as linear velocity is always changing) although it includes info about it Cases:

1. General Screw Motion $==$ Screw Joint

- $v=-\omega \times q+h \omega$, where h is pitch $=\frac{\text { trans }}{\text { rot }}=\frac{d}{\theta}$ and q is some point from some other reference frame
- $\xi=\left[\begin{array}{c}-\omega \times q+h \omega \\ \omega\end{array}\right]$

2. Pure Rotational Motion $==$ Revolute Joint

$$
\text { - } \xi=\left[\begin{array}{c}
-\omega \times q \\
\omega
\end{array}\right], v=-\omega \times q \text { as } h=0 \Longrightarrow h \omega=0
$$

3. Pure Translational Motion $==$ Prismatic Joint

- $\xi=\left[\begin{array}{l}v \\ 0\end{array}\right], v=$ direction of screw motion, $\omega=0$

For 1 and $2, \omega$ is a unit vector For $3, v$ is a unit vector
Chasles' Theorem: Every rigid body motion may be represented by a screw motion - a rotation about an axis followed by a translation parallel to that axis.
The transformation g corresponding to S has the effect on point p :

- $g p=q+e^{\hat{\omega} \theta}(p-q)+h \theta \omega$

Joint Space:

- Set of all possible joint positions for our basic joints
- $Q=S^{1} \times S^{1} \times R$ where "x" is the cartesian set product
- $Q=\theta_{1} x \theta_{2} x \theta_{3}$

Fwd kinematics mapping: $g_{s t}(\theta): Q \rightarrow S E(3)$. Expo Coords: (ξ, θ) Wedge: $\hat{\xi}=\left[\begin{array}{c}\hat{v} \\ w\end{array}\right]=\left[\begin{array}{cc}\hat{\omega} & v \\ 0 & 0\end{array}\right]$

1. $e^{\hat{\xi} \theta}=\left[\begin{array}{cc}I & v \theta \\ 0 & 1\end{array}\right]$, if $\omega=0$
2. $\begin{aligned} e^{\hat{\xi} \theta}=\left[\begin{array}{cc}e^{\hat{\omega} \theta} & \left(I-e^{\hat{\omega} \theta}\right)(\omega \times v)+\omega \omega^{T} v \theta \\ 0 & 1\end{array}\right](\text { Twist })= \\ {\left[\begin{array}{cc}e^{\hat{\omega} \theta} & \left(I-e^{\hat{\omega} \theta}\right) q+h \theta \omega \\ 0 & 1\end{array}\right](\text { Screw }) \text {, if } \omega \neq 0,\|\omega\|=1 }\end{aligned}$

$$
\left[\begin{array}{cc}
e^{\hat{\omega} \theta} & \left(I-e^{\hat{\omega} \theta}\right) q+h \theta \omega \\
0 & 1
\end{array}\right](\text { Screw }), \text { if } \omega \neq 0,\|\omega\|=1
$$

The degrees of freedom (DOF) of a robot arm are the number of joints in the robot which we may independently move.
Files Breakdown:

- ~/.bashrc: sets environment variables when running script to find ROS-specific things
- Build: stores information for building packages
- Devel: automatically generated files (e.g. header files)
- Src: Source code for packages (includes CMakeList.txt, Package.xml, include files)
- CMakeList.txt: input to cmake build system for building software packages
- Package.xml: metadata about the package contents/configuration and dependencies
- Include: C++ include headers

Essential Commands:

- catkin_make, then source devel/setup.bash
- MUST RUN AFTER DONE WITH LAB: ctrl+C out of all terminals, then pkill -u [username]
- roscd, rosls, roscore starts a server that all ROS nodes use to communicate
Nodes: Processes that compute
- an executable that uses ROS to communicate w/ other nodes
- rosnode info /node_name; No cd: rosrun pkg script.py args; rospy.init_node(node_name, anon: unique name)
- package.xml: build_depend, run_depend metadata
- rospack find package_name
- sourcing adds path of package to ROS_PACKAGE_PATH
- in /src, catkin_create_pkg <package_name> <list_of_dependencies>
- lauch file specifies several nodes to launch: roslaunch package_name launch_file.launch
Topics: Queues over which nodes exchange messages
- Nodes can publish messages to a topic as well as subscribe to a topic to receive messages
- rostopic echo /turtle1/cmd_vel, echo the message that a node is publishing to the topic /turtle1/cmd_vel; this creates a new node in cqt_graph
- /teleop_turtle publishes a message on topic /turtle1/cmd_vel, and the node/turtlesim subscribes to the topic to receive the message.

Services:

- service, request, and response types
- rosservice type /clear check the type of /clear service
- specific datatypes and args of requests and responses can be found in /srv/service.srv file
- rosservice call [service] [arguments] use rosservice call command to run
Message Types (ex. std_msgs/String):
- a ROS datatype used to exchange data between nodes
- variables and types in $/ \mathrm{msg} /$ Message.msg of package; need to update package.xml and CMakeLists.txt after creation
- usage: from package_name.msg import message_name. Try to make message name different from package name
Publisher: Node that sends message to a topic
- define talker(): method which contains the node's main functionality
- pub = rospy.Publisher('[topicName]', [msgType], queueSize = 10)
- $r=$ rospy. Rate(10): publish at 10 Hz publishing rate
- while not rospy.isShutdown():
pub. publish (pubString)
r.sleep()
- def callback(message): called whenever this node receives a message on the subscribed topic, received message is 1st argument
- listener(): contains node's main functionality
- rospy.Subscriber([topicName], [MsgType], callback)
- rospy.spin()

Server:

- rospy.Service(
'/\{\}/patrol'.format(sth = sys.argv[1]), \# Service name Patrol, \# Service type
patrol_callback) \# Service callback
- rospy.wait_for_service(<service name>)
- serv = rospy.ServiceProxy('service name','service type') serv(<args>) creates a proxy serv that we can send requests to

Client:

- rospy.wait_for_service('[service name]')
- patrol_proxy = rospy.ServiceProxy ([service name]('/xx/xx'), [service type](Patrol))

Mobile Robots TF:

rosrun tf tf_echo <source frame> <target frame> prints info about a transformation between the two frames tfBuffer = tf2_ros.Buffer()
tfListener = tf2_ros.TransformListener(tfBuffer) trans = tfBuffer.lookup_transform(turtlebot_frame, goal_frame, rospy.Time())
control_command.linear. $\mathrm{x}=\mathrm{K} 1 *$ trans.transform.translation. x control_command.angular. $\mathrm{z}=\mathrm{K} 2 *$ trans.transform.translation. y

Computer Vision

Example:
$K=I, \quad \lambda_{1} x_{1}=K X_{1}, \quad \lambda_{2} x_{2}=K X_{2} \Longrightarrow \lambda_{1} x_{1}=X_{1}, \quad \lambda_{2} x_{2}=X_{2}$

$$
g_{21}=(R, T), X_{2}=R X_{1}+T
$$

normalized: means the focal length is 1 Grayscale: 0 (pure black) and 255 (pure white) Thresholding: binary image (not grayscale) with 1's (white) representing our foreground or object of interest, and 0's (black) Two-View Geometry: there's the epipolar constraint which has $\left(x^{\prime}\right)^{T} E x=0, E=\hat{T} R, \mathrm{E}$ is the essential matrix, T and R are applied on x to get x ', this allows us to get depth
homography: apply affine transformation to an image t ochange perspectives (can straighten a pic), needs at least 4 pairs of points to do this
Launchfile format:
<launch>

<param name="marker_size" default="16.5">
<node>
<node name="" pkg="" type="" output="">

<param name="" type="" value="\$(arg marker_size)"> </node>
</launch>
Parameter server: ROS parameters are key-value pairs that ROS allows you to specify when launching a nodes that may be queried by those nodes at run-time.

Adjoints

- $\left(A d_{g}\right)^{-1}=A d_{g^{-1}}$ for all $g \in S E(3)$
- $A d_{g_{1} g_{2}}=A d_{g_{1}} A d_{g_{2}}$ for all $g_{1}, g_{2} \in S E(3)$

Action File .action file that specifics the data of all the action servers move $_{g}$ roup action server sends out feedback and result msgs while the action client recives these msgs and sends out a goal msg Velocities

- $q_{a}(t)=g_{a b} q_{b} \Longrightarrow \dot{q}_{a}(t)=\dot{g}_{a b} q_{b} \Longrightarrow v_{q_{a}}(t)=\dot{g}_{a b} g_{a b}^{-1} q_{a}$
- Circle Method: for v^{s} measure the length from joint to A-frame,this is your radius, radius * theta dot $=$ velocity (make a circle by rotating the line), for v^{b} measure length from joint to body frame instead make a circle by rotating this radius

Dynamics

$$
\begin{gathered}
T(\theta, \dot{\theta})=\sum_{i=1}^{n} T_{i}(\theta, \dot{\theta})=\frac{1}{2} \dot{\theta}^{T}\left(\sum_{i=1}^{n} J_{i}^{b^{T}} M_{i}^{b} J_{i}^{b}\right) \dot{\theta} \\
M(\theta)=M^{T}(\theta), \dot{\theta}^{T} M(\theta) \dot{\theta} \geq 0, \dot{\theta}^{T} M(\theta) \dot{\theta} \Longleftrightarrow \dot{\theta}=0 \\
V(\theta)=\sum_{i=1}^{n} m_{i} g h_{i}(\theta)
\end{gathered}
$$

- $\dot{M}-2 C$ is skew-symmetric
- when computing J_{i} remember the correct adjoints and ξ_{i} for each jacobian, some jacobians might have cols with 0s cause not enough joints
- Coriolis matrix represents fictional forces caused by rotating basis vectors, (i.e. coriolis and centrifugal force)
- when picking generalized state pick something and freeze it, if anything else in the system is still able to move then pick a variable that expresses that and freeze it as well, if everything is frozen then you're good to go!, x found with springs a lot, θ most definitely for rotations
- Task Space Dynamics: if
$x=f(\theta) \Longrightarrow \dot{x}=\frac{\delta f}{\delta \theta} \dot{\theta}=J \dot{\theta} \Longrightarrow \ddot{x}=J \ddot{\theta}+\dot{J} \dot{\theta}$ and $\Gamma=J^{T} F, \mathrm{~F}$ is the force we can control to move the tool $F=\tilde{M} \ddot{x}+\tilde{C} \dot{x}+\tilde{N}$ (you then solve this the same way as computed torque but using x instead of θ) for ex: $F=\tilde{M}\left(\ddot{x}^{d}-k_{p} e_{x}-k_{d} \dot{e}_{x}\right)$ TO GET FULL
EXPRESSION ISOLATE $\ddot{\theta}$ IN JOINT SPACE
DYNAMICS AND PLUG IT INTO the equation for

Control

- Joint-Space Control: given: $\theta^{d}(t)$ desired joint trajectory goal: $\theta(t) \rightarrow \theta^{d}(t)$ s.t. $\lim _{t \rightarrow \infty}\left\|\theta^{d}(t)-\theta(t)\right\|=0$
- Task-Space Control: given: $g_{S T}^{d}(t)$ desired tool trajectory, goal: design joint torque τ s.t. $\lim _{t \rightarrow \infty} g_{S T}(t) \rightarrow g_{S T}^{d}(t)$ USE computed-torque control!
- Computed-Torque Control: Choose Γ s.t. $\theta(t) \rightarrow \theta^{d}(t)$ as $t \rightarrow \infty$ can be done by having the scenario
- We want $\ddot{e}+K_{d} \dot{e}+K_{p} e=0, e=\left(\theta^{d}(t)-\theta(t)\right.$ this can be done by picking a Γ s.t.
$M(\theta) \ddot{\theta}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta)-\Gamma=\ddot{e}+K_{d} \dot{e}+K_{p} e=0$
- Commonly found that
$\Gamma=M(\theta) \ddot{\theta}^{d}+C(\theta, \dot{\theta}) \dot{\theta}+N(\theta)+M(\theta)\left(-K_{p} e-K_{d} \dot{e}\right)$

$$
\left[\begin{array}{c}
\dot{e} \\
\ddot{e}
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
-K_{p} & -K_{d}
\end{array}\right]\left[\begin{array}{l}
e \\
\dot{e}
\end{array}\right] \Longrightarrow \dot{x}=A x
$$

- if the real parts of the eigenvalues of A are less than 0 then that implies $e(t) \rightarrow 0, t \rightarrow \infty$, this is Feedback Linearizing Control
- if K_{d} and K_{p} are diagonal matrices then they need to be positive definite i.e. $z^{T} M z>0$ for all real-valued vectors z , aka the eigenvals of K_{p}, K_{d} are all positive
- when given $\ddot{x}+b \dot{x}+c=0$ the characteristic eqn. is $\lambda^{2}+b \lambda+c=0, x(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}$
- Gravity Compensation Control: want to hold an obj steadily against gravity, if $\dot{\theta} \tilde{=} 0 \Longrightarrow \Gamma=N(\theta)$
- Gravity Compensation + PD: $\Gamma=N(\theta)-K_{p} e-K_{d} \dot{e}$
- PID: proportional: does most of the work to pull state to desired traj, derivative: dampens proportional, prevents oscillation and overcorrection, allows for convergence, integral: corrects steady-state error caused by constant forces like g , can be thought as supplying force to keep error at 0
- Model Based Control: $u=u_{f f}+u_{f b}$

