
CS 182/282A: Designing/Visualizing and Understanding Deep Neural Networks

Fall 2022

Lecture 2: August 30 (Tuesday)

Lecturer: Prof. Anant Sahai

Scribes: Connie Huang, Jaewoong Lee

Today

1. Recap. Basic Standard ML Doctrine

2. Empirical Risk Minimization (ERM)-Optimization Perspective (e.g. Generalization)

3. Hyperparameters vs. Parameters

4. Gradient Descent & SGD

5. Intro. to Neural Nets via ReLU Nets

1 Recap. Basic Standard ML Doctrine

1.1 Typical Supervised ML Setup

• Training Data: xi, yi, where xi is input (or covariants), yi is label, and i = 1, 2, ..., n

• Model: fθ(−)

• Loss Function: l(y, ŷ)

• Optimizer

Our goal of a supervised ML setup is to make an inference ŷ on new data X as follows: ŷ = fθ̂(X),

where θ̂ are the learned parameters.

2 Empirical Risk Minimization (ERM)-Optimization Perspective

How do we learn parameters θ? The basic approach is to find the optimal θ for our optimization
problem,

θ̂ = argmin
θ

1

n

n∑
i=1

l(yi, fθ(xi)) (2.1)

We can then extend this to the probabilistic interpretation, maximum likelihood (ML) estima-
tion, where our loss function l(y, ŷ) is interpreted as the negative log-likelihood function.

The big picture goal for supervised machine learning is to achieve good performance in the real
world when the model is deployed. In practice, this is difficult to achieve because in the real world,
there are unexpected circumstances that we do not have data for and therefore cannot actually
represent in our model. As a result, we must use a mathematical proxy so that our model has a

2-1

2-2 Lecture 2: August 30 (Tuesday)

low generalization error. We can model the real world using a probability distribution P (X, y) and
aim to minimize the expectation of our loss function with respect to this probability function:

EX,y[l(y, fθ̂(X))]

However, our mathematical proxy introduces a few complications.

Complication 1: We do not have access to P (X, y).

Solution: collect a test set (xi,test, yi,test)
ntest
i=1 to be used once to evaluate our learned model

by getting test error.

1

ntest

ntest∑
i=1

l(yi,test, fθ̂(xi,test))

The model is desired to be tested once because it is not only hard to collect test data but also there
is a risk of data incest of test data while designing the model. Test data are not supposed to affect
the model.

Complication 2: The loss we care about may be incompatible with our optimizer. For example,
our optimizer will use derivatives to find optimal parameters, but our loss function may not have
nice derivatives everywhere.

Solution: Use a surrogate loss function ltrain(., .) that does have nice derivatives, computes
fast, and works with the optimizer. We use this surrogate loss function to guide learning of the
model. The real loss function is used to evaluate the model. Some standard loss functions include
squared error (regression); logistic, hinge, and exponential loss (binary classification); and cross-
entropy loss (multiclass classification). You may want to choose a loss function based on the
application settings of the problem and model.

This surrogate loss function is different from the evaluation loss function from complication
1. The surrogate loss function is used for training the model, and the evaluation loss function is
to see how well your model works with new test data. A few things to remember for choosing
an appropriate surrogate loss function are it should be compatible with the optimizer, guide the
model to the correct solutions, and run fast enough (e.g. easy to take derivatives). The squared
loss (ltrain = (yi − ŷi)

2 or in the vector form, ltrain = ||y − ŷ||2) is a good example of running fast
enough.

3 Hyper-parameters & Parameters

Complication 3: We might get crazy values for θ̂ (e.g. over-fitting). How do we solve this
problem?

Solution A: Add a regularizer during training.

θ̂ = argmin
θ

[
1

n

n∑
i=1

ltrain(yi, fθ(xi)) +R(θ)

]
(3.1)

In the above equation, R(θ) is the regularizer that can be chosen based on what loss function
is used. For example, if squared loss is used as the loss function, then the ridge regularization
(R(θ) = λ||θ||2) might be used as the corresponding regularizer. The ridge regularization prevents
the θ̂ values from becoming too big. The probability interpretation of regularization is Maximum

Lecture 2: August 30 (Tuesday) 2-3

A Posteriori (MAP) estimation where R(θ) corresponds to a prior, which means we want to
achieve optimal thetas, given R(θ), that find a good balance between the unpenalized loss function
and R(θ). Now, realize that we added a new parameter λ to the regularizer. How do we handle λ?

Solution B: Split parameters into two groups: The normal parameters (θ) and hyperparam-
eters (θH).

A hyperparameter is a parameter that cannot be trained or the optimizer cannot deal with.
For example, if λ was considered as a normal parameter in the above ridge regularization example,
then λ would end up with an absurd number being assigned (e.g. 0 and -inf). Another example
of a hyperparameter is the model order (degree) of a polynomial function fθ(xi).

How does the optimizer work with hyperparameters?
Figure 3.1 shows the classical division of data into three categories for hyperparameter fitting.
The process of parameters and hyperparameters fitting can be represented as a nested optimization
problem with the equations below. Notice that equation (3.3) is equal to equation (3.1) except
RθH (θ).

θ̂H = argmin
θH

1

nval

nval∑
i=1

lval(yi,val, fθ̃,θH (xi,val)) (3.2)

θ̃ = argmin
θ

[
1

n

n∑
i=1

ltrain(yi, fθ(xi)) +RθH (θ)

]
(3.3)

Process

1. Initiate the values of hyperparameters (θH)

2. Based on the values of hyperparameters (θH), compute the regularized loss with RθH (θ) on
the training data set to get θ̃ in equation (3.3)

3. Based on the values of normal parameters (θ̃) and hyperparameters (θH), find the best θ̂H
on the validation data set using equation (3.2)

Figure 3.1: Partitioning data for hyperparameter Tuning

You may split the original training data set into the new training and validation data set.
However, be careful about data contamination. (e.g. Duplicated data points in each data set. The
training and validation data set should be distinct)

2-4 Lecture 2: August 30 (Tuesday)

Complication 4: The optimizer might have ”knobs” (other parameters) associated with it. This
might include, for example, the learning rate (or step size) η in gradient descent.

Solution: Include these in θH or ignore this problem (i.e. pick a value that has worked in
the past. This is a reasonable approach in the light of the limit of the experimentation budget).

4 Gradient Descent and SGD

Gradient Descent (GD) is an iterative approach to optimization (with the spirit of Newton’s
method) that seeks the local optima taking repeated steps in the opposite direction of the gradient
around the current point. Also, Gradient Descent operates under the assumption that it’s a linear
system. What does the linear assumption mean? The basic idea is to look at the loss function
Lθ = 1

n

∑n
i=1 ltrain(yi, fθ(Xi)) + R(θ, θH) in the neighborhood of θ0 in any place using Taylor

Expansion.

Lθ(θ0 +∆θ) ≈ Lθ(θ0) + (∇θLθ(θ0))
T∆θ

Here, θ0, ∆θ, and (∇θLθ(θ0)) are vectors, and Lθ(θ0) is a scalar. From the equation above,
(∇θLθ(θ0)) is the gradient around θ0.

Using this approximation, we can iterate to find our optimal θ.

θ̂t+1 = θt + η(−∇θLθ(θt))

Notice that the gradient ((∇θLθ(θt)), multiplied by a scalar factor (η), at the current time step
t is subtracted (taking a negative step) from θt. η is the learning rate, which we set to be small
enough so that the system converges and big enough so that optimization is not too slow. One
problem we introduce with this method is that computing gradients for extremely large datasets
can be very computationally intensive. As a result, we introduce Stochastic Gradient Descent
(SGD), where instead of using the entire dataset of size n, we randomly choose a representative
subset of size nbatch from n every iteration to reduce the computation of gradients to only this
batch. Because we randomly choose a subset of size nbatch every iteration, the overall result over
time is a good estimate and trustful.

5 Intro. to Neural Nets via ReLU (Rectified Linear Unit) Nets

5.1 What is a Neural Net (Differentiable Programming)?

A neural net is an object that is easy to take derivatives (e.g. Analog circuits realized as computa-
tion graphs with (mostly) differentiable operations compatible with nice vectorization). Moreover,
differentiable operations allow nonlinearities.

5.2 Two goals of the analog circuits

1. Expressivity: Use the circuit to express the patterns that we want to learn. In other words,
the circuit is realization of the function fθ(−), and the θs are tunable resistors in the circuit.

2. Reliably Learnable: Think of your machine learning system as a microscope where you
look at data and the right patterns come into focus.

Lecture 2: August 30 (Tuesday) 2-5

5.3 Example of Neural Networks

Figure 5.1 shows a 1-D nonlinear (Blue) function, piecewise linear (Red) functions, and data
points (Black). As shown in the figure, the piecewise functions describe the nonlinear function
pretty well. Our goal is to find a set of piecewise linear functions (Red) that best match the
nonlinear function (Blue) based on the data points using Neural Nets. Then, how do we create the
piecewise linear functions? A linear combination of elbows (Rectified Linear Units) in Figure 5.2!
The rectifier circuit in Figure 5.2 is composed of a diode and a resistor. The diode prevents the
current from flowing in the opposite (or negative) direction. Setting the positive direction of the
current to be from left to right, it means that the current can never flow in the negative direction
(from right to left). All negative currents will be set to zero resulting in Vout readings being zero.
On the other hand, positive currents (from left to right) will go through the diode resulting in Vout

readings on the other side of the diode. The standard ReLU function is shown below.

f(x) = max(0, x) =

{
0 if x ≤ 0

x if x > 0

In this example, Vin is x and Vout is f(x). Also, the standard ReLU function can be modified if
needed. For example, x can be replaced with wx+ b, so that the modified ReLU function becomes
f(x) = max(0, wx + b). Here, w and b are the parameters(θ) we want to minimize using a loss
function as mentioned in the previous sections. More details and visualization will be covered in
the discussion session and next lecture.

Figure 5.1: 1-D nonlinear and Piecewise linear functions

2-6 Lecture 2: August 30 (Tuesday)

Figure 5.2: Elbow and Rectifier

6 What we wish this lecture also had to make things clearer?

• It would be helpful if more Empirical Risk Minimization (ERM) is covered in this lecture
more directly and potentially with diagrams.

CS 182 Lecture 3: Initialization and Regularization

September 1, 2022

Lecturer: Anant Sahai — Scribes: Shreyas Krishnaswamy

1 Finish up Basic ReLU Net

Neural Nets are easily (for a computer) differentiable function approximators.

1.1 Approximation (e.g., piecewise linear)

• How do you represent piecewise linear functions in a way that is differentiable for a computer?
→ Build out of ”elbows”!

• How does the ”elbow” depend on w (weight) and b (bias)?
→ Elbow located at − b

w and slope = w

• How do you move the ”elbow”?
→ Change w and/or b.

• The optimizer is trying to make the final real number (loss) as small as possible across all the
training points. To push the loss down, how much do I have to move y, b’s, and w’s? This
process goes backward and the elbow changes.

1.2 Initialization

Current Basic Folk Wisdom:

2

• Use whatever worked on a related problem. (e.g., pre-trained network, literature review, etc)

• Random initialization using Gaussian N(0, σ2).

* Xavier Initialization: σ2 = 1
d , where d is the fan-in of this unit.

* V ar(
∑d

i=1Xi) = dk (Xi are independent, has mean = 0 and var = k). Note that all
variances add up to 1.

Xavier initialization is appropriate when the nonlinearity is not a ReLU (e.g. hyperbolic tangents,
sigmoids, etc.). For ReLUs, He initialization (a.k.a. Kaiming initialization) is appropriate.

He Initialization

Gaussian N

(
0,

2

d

)

Why 2
d instead of 1

d? When initializing ReLU weights, we want our ReLU elbows to be close to
where the action is. In other words, we want the ReLUs to actually produce non-linearities, so our
model can emulate nonlinear phenomena.

If this is the case, about half of our ReLUs should be in the off-state, so the actual fan-in for ReLUs
is halved, which is why there’s a two in the numerator of 2

d .

There are many possibilities for initializing the biases. Some include:

• Xavier initialization on the biases

* Motivation: the bias can be considered another weight. Instead of using d, use d + 1
(i.e. add the bias’s fan-in) when initializing the corresponding unit.

• Make them all 0

• Make them all small random numbers

• Make them all the same small number (e.g. 0.01)

For different situations, some of these work better than others.

1.3 Aside: Dead ReLUs

If both weights and biases are distributed with normal distributions, the ratio b
w will be a Cauchy

distribution. This causes some ReLUs to be located far apart from the others. These ReLUs are
considered ”dead” since they output 0, and changing the weights or biases slightly doesn’t affect
their output.

3

2 Revisiting Regularization

2.1 Regularization in the Loss Function

This section explores regularization. Let’s begin by looking at general loss functions with and
without regularization.

Loss function without regularization

Lθ =
1

n

n∑
i=1

ℓtrain (yi, fθ (xi))

xi = ith data point (model input)

yi = Ground truth (i.e. expected) output for data point xi

fθ = Model with parameters θ

n = Number of training data points

ℓtrain = Loss on training data point i

Lθ = Total loss

This function tracks the loss between our parameterized model’s outputs and the expected outputs.
We can add a regularization function to it to create a loss function with regularization.

Loss function with regularization

Lθ =
1

n

n∑
i=1

ℓtrain (yi, fθ (xi)) +R(θ)

R(θ) = Regularization term on model parameters θ

2.2 Regularization in Least Squares

For a more intuitive understanding of regularization, we can look at least squares. Let’s start by
reviewing the problem: we have a matrix X and vector y⃗, and we want to calculate the weights w⃗
that best approximates Xw⃗ = y⃗.

Ordinary Least Squares (OLS)

Problem: argminw ||y⃗ −Xw⃗||2

Solution: ˆ⃗w =
(
XTX

)−1
XT y⃗

We can add regularization to OLS. One version of regularized OLS is called ridge regression:

4

Ridge Regression

Problem: argminw ||y⃗ −Xw⃗||2 + λ||w⃗||2

Solution: ˆ⃗w =
(
XTX + λI

)−1
XT y⃗

λ is the regularization parameter. It penalizes high-magnitude weight vectors (can you see
why?). We can select different λ values to control the behavior of ridge regression. When λ is
higher, the weight magnitude penalty is more severe; when it’s lower, the penalty is lighter, which
allows ridge regression to settle on weight vectors with higher magnitudes.

Note that when λ = 0, ridge regression becomes unregularized. This unregularized formulation
simplifies to the OLS problem and solution. Intuitively, setting λ = 0 tells ridge regression to
disregard the weight vector’s magnitude altogether, allowing it to solve the problem as though it
were simply OLS.

2.2.1 Gradient Descent

We can also solve least squares with gradient descent. Gradient descent is a process where we
aim to improve our model by repeatedly moving its parameters in the direction that minimizes the
cost function. For least squares, the parameters are stored in ˆ⃗w.

The gradient for least squares without regularization is

OLS Gradient Descent

Gradient (with step size): η2XT
(
y⃗ −X ˆ⃗w

)
Update step: ˆ⃗w(t+1) = ˆ⃗w(t) + η2XT

(
y⃗ −X ˆ⃗w(t)

)
ˆ⃗w(t+1) = Weights ˆ⃗w at timestep t+ 1

ˆ⃗w(t) = Weights ˆ⃗w at timestep t

η = Step size

y⃗ −X ˆ⃗w(t) = Residual at timestep t

We can create a similar update step for ridge regression:

Ridge Regression Gradient Descent

Gradient (with step size): = η
(
2XT

(
y⃗ −X ˆ⃗w

)
− 2λ ˆ⃗w

)
Update step: ˆ⃗w(t+1) = (1− 2ηλ) ˆ⃗w(t) + η2XT

(
y⃗ −X ˆ⃗w(t)

)

5

Note that the ridge regression update step can be derived by rearranging the gradient and adding
it to the weights at time t.

The coefficient (1− 2ηλ) causes an effect called weight decay. On top of adding an update, the
regularized update also decays the weights, making the system of gradient descent more stable.

2.3 Data Augmentation View

We can also look at regularization through the data augmentation lens. Suppose we want to
solve an OLS problem where we have appended fake data points to our X matrix. For example:

Data-Augmented System[
X√
λI

]
w⃗ ≈

[
y⃗

0⃗

]

Dimensions

X : n× d
√
λ : constant

I : d× d (identity)

w⃗ : d× 1

y⃗ : n× 1

0⃗ : d× 1

√
λI represents some fake data. We append zeros

(
0⃗
)
to y⃗ in order to match our output’s dimensions

to the augmented X matrix. Once again, λ is a regularization parameter.

We can apply the OLS solution to this system:

([
X√
λI

]T [
X√
λI

])−1 [
X√
λI

]T [
y⃗

0⃗

]
=
(
XTX + λI

)−1
XT y⃗

The output matches the ridge regression solution!

What’s happening here? Intuitively, each of the data points added to the X matrix is trying to
make the corresponding feature go to 0 in order to fit to the zeros we appended to y⃗ – just like a
regularizer! Recall that ridge regression similarly penalized high-magnitude weight vectors, which
also added pressure to reduce the weight vector’s magnitude.

6

The data augmentation view is useful because it’s intuitive to generalize. We can add modified or
fake data like we did in this example to other machine learning problems or architectures in order
to regularize them.

2.4 Feature Augmentation

Another approach to regularization is feature augmentation, where we add irrelevant features
to our system.

Feature-Augmented System

[
X

√
λI
] [w⃗

f⃗

]
= y⃗

Dimensions

X : n× d
√
λ : constant

I : n× n (identity)

w⃗ : d× 1

f⃗ : n× 1

y⃗ : n× 1

√
λI represents some fake features that we have added to the X matrix. To make the dimensions

match, we have appended fake weights f⃗ (that we don’t care about) to w⃗ (which we do care about).

Note that since the augmented X matrix is wider than it is tall, the problem uses strict equality.
This also means the system has infinitely many solutions, and we need to pick one of them.

For now, let’s use the Moore-Penrose Pseudoinverse to find a minimum-norm solution to this
problem.

[
ˆ⃗w
ˆ⃗
f

]
=

[
XT
√
λI

]([
X

√
λI
] [XT

√
λI

])−1

y⃗

ˆ⃗w = XT
(
XXT + λI

)−1
y⃗

We arrive at the second expression above by discarding the fake weights
ˆ⃗
f since we’re only looking

for the weights stored in ˆ⃗w.

7

Note that the final expression for the ˆ⃗w vector looks a bit different than the OLS solutions from
the other setups. This expression is actually the dual perspective of ridge regression, called kernel
ridge regression.

This means that augmenting with features actually has a regularizing effect. This phenomenon is
one of the reasons people say deep neural networks are effective. Not only are they more expressive,
but by adding many extra features, they may also be more effective regularizers.

8

EECS 182/282A Deep Neural Networks Lecture 4 - 09/06/2022

Lecture 4: Basic Principles Part II
Instructor: Anant Sahai Scribe: Austin Zane

1 Regularization

1.1 Explicit Regularization

This is a recap of the previous lecture. For the ordinary least squares problem Xw ≈ y, the solution is
given by

ŵ =
(
XTX

)−1

XTy.

However, this can give us very large and not very useful values for the parameter vector. In such cases, it
is often beneficial to “regularize” the parameters when training so that they stay reasonable. A common
choice is ridge regularization, which uses a modified version of the least-squares loss function:

argmin
w

||Xw − y||22 + λ||w||22.

A bit of vector calculus shows that the new solution for ŵ is given by

ŵ =
(
XTX + λI

)−1

XTy = XT
(
XXT + λI

)−1

y,

where the first formula is the classic ridge form and the second is kernel ridge form. The equivalence can be
seen as follows,(

XTX + λI
)−1

XTy =
(
XTX + λI

)−1

XT
(
XXT + λI

)(
XXT + λI

)−1

y

=
(
XTX + λI

)−1 (
XTXXT + λXT

)(
XXT + λI

)−1

y

=
(
XTX + λI

)−1 (
XTX + λI

)
XT

(
XXT + λI

)−1

y

= XT
(
XXT + λI

)−1

y.

There is a way of thinking of the first formulation as solving the primal and the second as solving the dual.

1.2 Data and Feature Augmentation

Instead of explicitly changing the loss function, we can add d “fake” data points to our data matrix to achieve
the same regularizing effect (as proven in previous lecture):

[
X√
λId

]
w ≈

[
y
0d

]
,

1

where the new data matrix is in R(n+d)×d and the new response is a vector in Rn+d. This is an important
concept and can be thought of as improving the conditioning number of the data matrix. Plugging the new
data matrix and response vector into the classic OLS solution immediately gives us the solution for the ridge
regularized problem.

Another equivalent option is adding n fake features:

[
X

√
λIn

] [w
f

]
= y.

We use the Moore-Penrose pseudoinverse to solve for the new weight vector,[
w
f

]
=

[
X

√
λIn

]†
y =

[
XT
√
λIn

]([
X

√
λIn

] [XT
√
λIn

])−1

y.

We are only interested in solving for w, so we disregard the n rows corresponding to the false parameter f .
In the end, we are left with the minimum norm solution to the under-determined system specified above,

w = XT

([
X

√
λIn

] [XT
√
λIn

])−1

y = XT
(
XXT + λI

)−1

y.

1.3 Using Singular Value Decomposition to Simplify Regularization

Using the singular value decomposition (SVD) in place of X in the above equations allows us to simplify
things and make the algorithms far easier to handle. Namely, we are able to update each weight individ-
ually instead of solving systems of equations. This can be seen by taking the SVD of X and solving the
unregularized problem

Xw = UΣV Tw ≈ y

⇒ Σw̃ ≈ ỹ,

where w̃ := V Tw, ỹ := UTy, and Σ ∈ Rn×d. Note that U , V are orthogonal matrices so they merely
rotate our vectors while preserving their norms. Let σi denote the ith singular value. Because Σ is diagonal
and we are assuming that n > d, only the first d equations will be meaningful here:

for d equations: σiw̃[i] ≈ ỹ[i] ⇒ w̃[i] ≈ 1

σi
ỹ[i],

for n− d equations: 0 ≈ ỹ[i].

As previously stated, using these coordinates removes the system of equations and allows us to simply solve
for the individual weight components. Observe that we are dividing by the singular values so problems may
arise if they become too small (i.e. if the matrix is ill-conditioned). This is the underlying cause of OLS
sometimes giving us wild values.

Next, we consider using ridge regression. In this setting, the solution is obtained by plugging the SVD of X

2

into the previously mentioned classic solution for ridge regression.

ŵ =
(
V ΣTΣV T + λI

)−1

V ΣTUTy

= V
(
ΣTΣ+ λI

)−1

V TV ΣTỹ

= V
(
ΣTΣ+ λI

)−1

ΣTỹ

⇒ ̂̃w =
(
ΣTΣ+ λI

)−1

ΣTỹ.

In the end, we are left with solutions of the form

w̃[i] =
σi

σ2
i + λ

ỹ[i].

If λ << σ2
i , then we are in the same situation as the unregularized case. If λ >> σ2

i , then the weights are
forced to stay small instead of behaving wildly.

1.4 Implicit Regularization

Implicit regularization is the regularization that occurs when we aren’t consciously doing any regularization.
When performing explicit regularization as above, we must specify a specific regularization hyperparameter
and modify the training data, model architecture, or loss function. In contrast, implicit regularization is an
unexpected benefit stemming from our choice of optimizer. We will see that choosing gradient descent as
our optimization algorithm, combined with the large size of DNNs, provides enough regularization for DNNs
to generalize well without us intentionally restricting the parameters.

To gain intuition, let’s look at gradient descent (GD) updates for OLS in SVD coordinates:

w̃t+1 = w̃t + 2ηΣT (ỹ −Σw̃t) ,

where w̃t represents the parameter vector at the current step, w̃t+1 represents the updated parameter vector,
Σ represents the diagonal matrix of singular values from the above SVD, ỹ := UTy as defined above, and η
is our learning rate hyperparameter.

Note that because we are dealing with a diagonal matrix, this works out to updating each component of the
weight vector individually. They don’t interact with each other at all during GD, so each is being modified
as follows:

w̃t+1[i] = w̃t[i] + 2ησi (ỹ[i]− σiw̃t[i]) .

This is potentially unstable because we are not reducing w̃t[i] at each step as we did in the last lecture.
This means that, subject to a bounded input, we might get an unbounded output if we allow the algorithm
to run forever. Observe that the stationary point is the solution we discussed earlier, w̃[i] = 1

σi
ỹ[i]. If σi is

tiny, then we find ourselves in a bad situation.

Let’s carefully calculate the first few steps of GD to see what’s going on:

w̃0[i] = 0

w̃1[i] = 2ησiỹ[i]

w̃2[i] = 2ησiỹ[i] + 2ησi (ỹ[i]− σi2ησiỹ[i]) ≈ 4ησiỹ[i].

3

Observe that this is roughly a linear function with an extremely small slope if σi is tiny. In this situation,
GD barely moves in the early stages even though it will eventually converge to a very large value, as
previously discussed. Together with early stopping, this means that GD is trying to do something like ridge
regularization for us because it will resist enlarging the directions corresponding to small singular values.
Early stopping is when we stop the training process because validation performance has gotten worse or has
not improved for a long time. It is important to note that GD, when initialized at zero, will converge to the
minimum-norm solution. This is a good exercise for the reader to verify.

To summarize, there are three kinds of regularization: explicit regularization, data augmentation (adding fake
observations or features), and implicit regularization (optimizer has implicit regularizing effect). Regarding
DNNs, the combination of the min-norm seeking behavior of gradient descent and the feature augmentation
that is implicit when using large networks gives a lot of regularization even if we weren’t thinking about it.

2 Trade-offs Between Qualitatively Different Sources of Error

Suppose we have learned a model θ̂ → fθ̂. At “test time”, we look at the error,
(
Yobserved − fθ̂(x)

)
. There

are three main sources of error:

1. Irreducible error : This is due to noise or randomness from Y |X itself. In short, there is some level
of noise that is impossible for our model to account for. One possible situation is that the underlying
response is a deterministic function of X (i.e. not random), but there is randomness in the measure-
ment. It is possible that our model perfectly predicts the underlying signal, but the model will still
disagree with Yobserved and contribute to the error. In the classic setup of y = ftrue(x) + εnoise, the
εnoise term contributes to irreducible error.

2. Approximation error : This error comes from limited expressive power of fθ as a finitely-parameterized
model. In other words, our model isn’t “flexible” enough to capture the true signal. For example,
trying to fit the function y = cos (x) using a single 6th degree polynomial model, fθ(x) =

∑6
i=0 aix

i.

3. Estimation error : There are two components to this type of error, both of which are well-covered in
prerequisite machine learning courses:

(a) Bias: Bias captures the systematic error of our learning algorithm and training data in terms
of making predictions. We write this mathematically by Eε,D[fθ̂(D)(X) − Y |X]. Note that ε

respresents the randomness in Y |X and D represents the randomness in the training process used

to get θ̂. For example, this could include the training data set we used or the splits made in
random forest trees. Traditionally, X is separate from D and is not random. It is common to
look at the squared bias to prevent positive and negative biases for different observations from
canceling.

(b) Variance: This is the variable part of error. We write it as ED[(fθ̂(D)(X) − ED[fθ̂(D)(X)])2|X],
where D again represents the randomness of the training process. It describes how much our
prediction “shakes” as a function of the randomness in the training.

This perspective can be useful and many papers utilize the bias-variance decomposition in their derivations.
However, it doesn’t always match what our intuition might be, especially in deep learning settings. The
following figure is intended to help us understand this point.

This drawing is for high-level intuition, so we musn’t allow ourselves to become confused over the exact
dimensions and projections. We first turn our attention to the figure on the left. The line passing through

4

Figure 1: Approximation and Estimation Error

the origin represents the subspace models that we are considering. Note that we are only capable of providing
estimates that fall along this line. As we can see, the true model is not in this subspace so we will suffer a
certain amount of approximation error.

Turning our attention to the figure on the right, we project the true model onto the subspace of models
that we are considering. The result is the best possible approximation and is the goal of our learning
algorithm. We see in the figure that our predicted model is not quite equal to the best approximation. In
this perspective, instead of thinking of things in terms of bias and variance, we consider how much of the
“true” and “false” directions we are incorporating into our prediction.

We make this a bit more formal by discussing survival and contamination. Survival reflects, in expectation,
how much of the true pattern survives the estimation/learning process. Contamination is how much useless
information get “learned”, e.g. spurious features that our model is capable of picking up but don’t help
with prediction. Survival and contamination can be thought of as the intuition behind bias and variance,
respectively.

3 What are “Features”?

The following is a simplified sketch of a neural network with ℓ hidden layers.

Figure 2: Simplified DNN

5

If we treat everything before the output of Hℓ as a black box, we can think of things from the perspective of a
generalized linear model. We have a featurizer, some linear function of those new features, and a loss that we
are optimizing. The featurizer lifts or distills the input X into a nicer feature space. In this perspective, the
“learned” features are the outputs of the penultimate layer in the featurizer, Hℓ. We want the featurization
to be data-driven instead of hand-picked, so the layers essentially find a representation of the data that
allows the generalized linear model (GLM) to work well.

However, there is another important point of view. Suppose a generalized linear model is given by ŷ =∑λ
i=1 wiϕi(x), where ϕ(x) is the output of the ”featurizer” in the figure above. When we are actually using

the model on new data, these are simply the features. However, from the training perspective, they also
determine the gradient. The derivative of the linear model with respect to the ith parameter is ∂ŷ

∂wi
= ϕi(x).

In short, we don’t understand nonlinear systems well, so our standard approach to understanding a nonlinear
system is local linearization. We zoom in until things are roughly linear around a certain point. In terms of
DNNs, we say that the deep network is Taylor expanded around the features in such a way that it is some
constant term plus a local GLM in which small increments of the features change the predictions in a small
way. This will be covered in greater detail during the next lecture.

6

CS282 Lecture 5: Survey of Architectures and Problems

Lecturer: Anant Sahai, Scribes: Gabrielle Hoyer, Kevin Tsai

September 2022

1. Last Lecture Recap

In Lecture 4, we talk about using regularization to prevent our dependence on direction in the SVD

space (direction with small singular values) that we don’t trust. Various methods of regularization are

mentioned and discussed, in particular we analyze:

1.1 Explicitly Adding Terms to the Cost Function

This corresponds to transforming the optimization problem to:

minθ (ltrain(θ) +R(θ))

where R(θ) is a regularization term, e.g., for l2 regularization this could be:

R(θ) = λ||θ||22

Under l2 regularization and least squares loss function, the transformed problem is the classical ridge

regression with solution θ∗ where X is the data matrix and y is the target vector.

θ∗ = (XTX + λI)−1XTy

1.2. Weight Decay (Explicit in the Algorithm)

With ridge regression, the penalty term λ||θ||22 inside the cost function has a gradient that is propor-

tional to the weight (θ) itself. When performing gradient descent, this amounts to scaling down the

norm of the weight (provided that the learning rate is sufficiently small), i.e., θt+1 = (1 − 2λζ)θt +

usual terms for gradient descent, where ζ is the learning rate (this is like pulling the weights down).

This form of regularization is listed separately from the first one even though it might appear to be

equivalent; this is because for applications other than ridge regression (with gradient descent), some-

times a general optimizer (or algorithm) might not work well with the l2-penalized cost function, in

which case, we can still perform the weight decay regardless.

1.3. Data Augmentation

It is also possible to mimic regularization by inserting artificial observations into the data matrix, i.e.[
X√
λId

]
θ ≈

[
y

0d

]

1

This is important for neural networks, e.g., adding flipped/rotated images into the training data for a

convolutional neural network.

1.4. Feature Augmentation

Instead of extending the data matrix row-wise, we can also extend it column-wise, e.g., by appending

artificial features to each existing observation.

[
X

√
λId

] [θ
θ′

]
≈

[
y
]

This is also important for neural networks; we will see in section 2 that we have just as many weights (pa-

rameters) as we have features in a neural net, and these many features can have the desired regularization

effect.

1.5. Implicit Regularization during Optimization

Optimization algorithms such as gradient descent implicitly implement regularization, even when the

objective function does not include the regularization penalty. Features (in the SVD space) are more

favored if they correspond with large singular values (i.e., in each iteration, they take bigger steps),

whereas those with small singular values move hardly at all. For those “good” features with large

singular values, we hope that they are likely to correspond to true patterns. On the contrary, those with

small singular values, we hope they are spurious signals.

In addition to the regularization effect introduced by how the optimization algorithm responds

to different singular values, early stopping is another implicit mechanism we have for most iterative

algorithms; this effectively prevents the weights from becoming arbitrarily large.

1.6. Bias-variance Trade-off

Figure 1: Training Error and Test Error vs Model Complexity

A common plot in traditional machine learning is the evolution of training error and test error

as the complexity of a model increases. The complexity of a model can be the number of parameters

estimated, the degrees of polynomials used, or the number of hidden layers/units in a neural network,

etc. Figure 1 shows a simple demonstration of such a plot: When the model has zero complexity (e.g.,

an intercept model) the training error is equal to the test error and their specific values are called the

null risk (note that they need not be identical). As the model becomes more complicated, the training

error usually decreases faster than the test error, and at some point, the test error ceases to decrease

and begins to increase (what people usually call overfitting) whereas the training error approaches zero

2

eventually (which could potentially be concerning if there is non-reducible error in the data generating

process and a zero error implies the model is fitting the noise). The reason why the test error begins

to increase can be attributed to the increase in estimation error with the increased complexity and the

decrease in approximation error (from the more complex model) can not compensate for that.

It is possible, however, that the test error in the overfit regime can again start to decrease when the

model becomes even more complicated. This is apparently what practitioners of deep neural networks

observe and most deep neural networks that work reasonably well are thought to be in this regime

(Regime B in Figure 1). One would be concerned if a traditional machine learning model ends up with

zero training error (whatever it means in the context) as it indicates overfitting, but when it comes to

deep neural networks, people would actually only start to consider the model if it can attain zero training

error because they believe a well-designed deep neural net should be operating in Regime B. The 4th

(feature augmentation) and 5th (implicit regularization) regularization methods mentioned above may be

at work to contribute to the reduction in test error in this regime (a potential decrease in approximation

error is also a possible cause of reduction). It is likely that these two regularization methods help control

the estimation error when deep neural networks perform well.

Although we know the 4th and 5th regularization methods are important for neural networks,

for practical reasons, it is often the case that practitioners would try all 5 methods of regularization

mentioned above. One of the reasons why someone might want to do that is because these methods do

not work independently from each other; e.g., if we want to take advantage of implicit regularization

and we want the feature direction with large singular values to match what we believe to be true, we

probably need other regularization techniques to encourage the behavior.

Last, despite the fact that our discussion centers around training a neural network, the behavior

in Regime B (small test error with a really complex model) can also be observed in other traditional

machine learning models, e.g., tree-based models and kernel methods. One of the first realizations of

such behavior is said to have been discovered with boosted trees.

2. Features

Figure 2: Generalized Linear Model with intermediate features

2.1 Neural Net Represented as a Generalized Linear Model

When thinking about deep neural networks, it is useful to consider the optimization algorithm from a

local linear perspective. The below equation states an interesting relationship between ŷ, our model, x,

the training data, and θ, the learned weights. Specifically, the equation describes that ŷ(x) for given

current parameters relative to the parameters to change, is equal to ŷ for x relative to current parameters

and outcomes, plus the partial derivative of ŷ relative to all parameters, evaluated at θ0, times the desired

3

hypothetical parameter change.

ŷ(x) = ŷ(x, θ0) +
dŷ

dθ

∣∣∣∣
θ0

·∆θ⃗

From this perspective, one can see that despite the many possible layers within a neural net,

the algorithm is working on a generalized linear model (though differently centered) with a feature

corresponding to every parameter. The ∆θ⃗ vector is the size of the number of parameters that can be

learned; therefore, dŷ
dθ is this same size. In this way, the generalized linear model can be described by the

following equation in which our model, θ⃗ is acting on some featurization vector, ϕ⃗(x).

y = θ⃗T ϕ⃗(x)

Specifically, this construes the lifting of x to a set of features, which are functions of x, to return scalars.

This is turn is multiplied by the weights, and the output is this linear combination. While we do not

fully understand the nuances of deep neural networks, we understand linear models very well, thus the

simplification of our optimization problem by our algorithm in a local perspective is quite useful.

When thinking about our deep neural network, it is important to understand that the Gradient

Descent direction is not determined from the features of the penultimate layer,“features learned” in

Figure 2, but rather the the derivative feature matrix dŷ
dθ described in our equation. Indeed, it is this

feature matrix that helps determine the singular value, big or tiny σi, in Gradient Descent, thereby

determining our next trusted direction to move.

2.2 Discussion Example

Below is an example from our latest discussion. Figure 3 displays a neural network with affine layers,

ReLU non-linearity, and a fully-connected layer. This neural network has a single hidden layer, a scalar

input and scalar output. The neural network has a width of k. The parameters of this network can be

viewed in two different ways:

1) 3k + 1 total parameters, stemming from kW1, kb1, kW2, kb2

2) k + 1 parameters from the generalized linear model view.

Figure 3: ReLU Neural Network

4

Consider the following equations. The partial derivative of our network output y in respect to

our weights, W , and biases, b, elucidate the dependence of earlier layer features on the features of the

later layers. This is interesting, but also introduces the necessity of decoupling these features, a topic of

normalization which will be discussed at a later time.

Figure 4: Gradient plots, First:
dy
db2j

Second: dy
dW 2

j
Third: dy

db1j

Fourth: dy
dW 1

j

dy
db2j

(x) = 1

dy
dW 2

j
(x) = max(0,W 1

j x+ b1j)

dy
db1j

(x) =

{
0 ReLU − off

W 2
j ReLU − on

dy
dW 1

j
(x) =

{
0 ReLU − off

W 2
j x ReLU − on

The above example corresponds to a neural network with a single

output. In the case of a network with multiple outputs, there will be

features which correspond to each output. Furthermore, in the case

of the general linear model each output of the penultimate layer is

assigned its own weight. However, in the case of a deep neural network

such as for multi-classification, there will be features corresponding to

each output with weight sharing.

In the case of a very large linear model with many features, each

feature performs a small part of the work of fitting the residual; the

amount each corresponding weight moves is quite small. Interestingly,

there is a hypothesis in the field to consider which states that for a very

large model, a sufficient distance from initialization is never reached to

change the features (or derivatives of the features) in a notable way,

nor is it truly necessary. This is a perspective that deep neural nets do

indeed behave quite like a general linear model.

3. Survey

There are a variety of Neural Network architectures and specific applications in which they can be used.

Technical application domains and the approaches in which you engage with them will be further explored

in detail at a future time. Our multi-dimensional architecture-application grid can be seen below:

Neural Net Architectures (families)

Area of Use Multilayer

Perceptron

Convolutional

NN

Recurrent

NN

Graph NN Transformers

Vision

Natural Lang. Processing

Time Series

Recommendation Engines

Scientific

Control

5

CS 182/282A Lecture 6:

Michelle Tong, Nikhil Potu Surya Prakash

UC Berkeley - Fall 2022

Lecture Topics

1. Deep Learning Survey

2. Deep Learning Problems

3. Optimization Overview

1 Deep Learning Survey

Conceptually these 4 sections: network architecture, problem domains, problem types, and engineering concerns.
These 4 topics can be thought of as the dimensions of a 4D grid describing the field of DL.

Figure 1:

1.1 Network Architectures

• Multi-Layer Perceptron (MLP)

– network has fully connected layers

• Convolutional Neural Nets (CNNs)

– useful for images

– spatial regularity is embedded in the network architecture

• Recurrent Neural Nets (RNN)

– the model architecture is different than CNNs but both architectures have a sense of internal state over
time from array and weight sharing are over time

• Graph Neural Nets (GNN)

1

– nearby items are more related

• Transformers

– can access input data elsewhere and weight share

• We can tune these networks with various levels of specificity but for the scope of this class we will focus on
common underlying problems that may occur.

1.2 Problem Domains

• Vision

• Natural Language Processing (NLP)

• Control
For the scope of this class, we will explore certain domains to build intuition and experience designing networks
and understand trade offs. Additionally research in this field is commonly in one of these domains so literacy
is a plus.

1.3 Types of Problems

• Regression - to predict reals numbers

• Classification - to categorize

• Generation - to make/synthesize - generation as opposed to recommendation focuses on new outputs, one such
example is the generation of new images of the same scene but in a different style (photo into a painting)

• Recommendation (including conditional generation) - often to commercialize and make money
Deep learning aims to identify underlying regularities for these problems.

1.4 Engineering concerns

• Optimizer choice

• Regularization (augmentation, normalization, explicit, weight-sharing)

• Pre-training and self-supervision

– learning models need large amounts of data to be trained well

– Can we use external data to enhance the ML model? Yes. In theory, ML networks are able to learn
regularities that are present elsewhere in large datasets. When new data is presented to the network, the
model is able to focus on optimizing the nuances in the external data.

• Scaling

– larger models (more layers, units, data) tend to work better but it needs to be trained first

– the network is tweaked to work and also scaled to run on various components and parallel clusters

– the network is also often scaled down to run on devices for deployment

• Experimentation

– there are various ways to design experiments such as varying the input data or model architecture (we
will cover this more in depth later in class)

• Debugging

– there are various ways to troubleshoot models (we will cover this more in depth later in class)

2

2 Deep Learning Problems

2.1 Standard Computer Vision problems

1. Object classification - What is the object? Is the image a cat or dog? This method assumes there is only one
object in the image.

2. Object location - Where is the object? Where is the cat? One challenge with localization is determining how
many of the object is in the image.

Figure 2:

3. Object detection - What and where are the objects? Where is the dog, cat, and duck in the image?

4. Semantic segmentation - scene understanding (Can we modify architecture to be better than building a classified
for each pixel?)

5. Style transfer - ex. change a picture to an impressionist painting

6. GANs (Fig. 3) - making fake realistic images (Can you generate images from a class?)

Figure 3:

3

7. Unpaired data testing - How does network perform with data that is not paired? Appropriately paired data
generally works well.

• Example: draw the outline of bread and tell the network to make a cat

2.2 Natural Language Processing (NLP) Problems

• OpenAI GPT-2 (Fig. 4)

– NLP was previously rule based, but now networks can learn patterns of language

– Example: the network learns words, grammatical types, sentence structure, flow, and pragmatics but does
not necessarily learn how to reflect reality

Figure 4:

2.3 Datasets

• CIFAR-10 and CIFAR-100 - dataset of images with 10 or 100 classes, 50,000 training images and 10,000 test
images, labels were assigned by humans, image dimensions are 32x32x3

• imageNet - images with 1,000 classes,1.2 million training images, 50,000 evaluation images, labels were assigned
by humans

2.4 Networks

• AlexNet (Fig. 5)

– classic medium depth network

– widely known to be the first NN to attain state of the art results on ImageNet challenge

• ResNet (Fig. 6)

– very deep, trainable network

– does not include a large FC layer at the end, instead just average pools over all positions and has 1 linear
layer

– network development was driven by trying to improve the optimizer

4

Figure 5:

Figure 6:

– network is leading to super-human performance which means the performance is better than that of
humans doing the task, it actually achieved superhuman accuracy on some tasks

• fully convolutional networks

– low-res (but high-depth) processing in the middle integrates context from the entire image

– up-sampling at the end turns these low-res feature vectors into high-res per pixel predictions

• U-Net architecture

– concatenate activations from conv layers to upsampling layers

• RNNs (Fig. 7)

5

– the network addresses the question, how can time oriented data, such as time series or sequential data,
be digested and used for different problems

• Transformers (Fig. 8)

– aims to solve sequence-to-sequence tasks while handling long-range dependencies with ease

Figure 7:

Figure 8:

6

3 Optimization Overview

In this section, a brief overview of important ideas in numerical optimization algorithms are presented. For a detailed
understanding of what each of the methods does, refer to the course material of EE 227C. For ML networks, we need
to solve the algorithm using an optimizer. In practice, people use optimizers that were used for similar problems
before as a starting point and hyper-parameter tuning.

• Important optimization considerations

– Learning rate - What rate are we moving down the gradient? How large is our step size?

– Momentum based methods

– Adaptive approaches

– two common optimizer choices - Stochastic Gradient Descent which is mostly influenced by the learning
rate hyper-parameter or ADAM optimizer which is an adaptive approach

First we want to understand optimization in terms of GD then we will understand optimization in terms of SGD.
Let’s begin by breaking down the learning rate in terms of a least-squares perspective.

3.1 Singular value Decomposition (SVD)

Let us recall the singular value decomposition of a matrix X. For real matrices X, its singular value decomposition
can be written as

X = UΣV Twith X ∈ Rm×n, U ∈ Rm×m, V ∈ Rn×n and Σ ∈ Rm×n. (1)

The matrices U and V are orthonormal matrices and satisfy the properties UTU = UUT = Im×m, V TV = V V T =
In×n. The matrix Σ is a collection of singular values of X along its diagonal. The singular values of X are the positive
square roots of non-zero eigenvalues of XXT or XTX. If X has rank ‘r’ then there would be r singular values of X.
Let the singular values of X be denoted by σi for i ∈ {1, . . . , r}. The matrix Σ can be written as

Σ =

[
diag(σ1 . . . σr) 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
We can also see that columns of U are the extended eigenvectors of XXT and similarly the columns of V are the
extended eigenvectors of XTX.

3.2 Least Squares

Optimization algorithms can be understood and analysed easily using simple optimization objective to which closed
form minimizers exist. Least Squares problem is one such elegant optimization problem.

The least squares approximate solution of the equation Xw = y can be found using the following optimization
problem.

w∗ =argmin
w

||Xw − y||22 (2)

Utilizing the SVD of X The same optimization problem can be formulated using change of coordinates as follows

min
w

||Xw − y||22

=min
w

||UΣV Tw − y||22

=min
w

||U(ΣV Tw − UT y)||22

(3)

Notice that the norm of a vector doesn’t change when it is just rotated without stretching. The orthonormal matrices
U and V have orthonormal columns and hence just rotate the vectors without stretching them. Therefore,

min
w

||U(ΣV Tw − UT y)||22

=min
w

||ΣV Tw − UT y||22

=min
w̃

||Σw̃ − ỹ||22

(4)

7

where V Tw = w̃ and UT y = ỹ In eq.(4), since Σ has singular values only along its diagonal, the objective can be
decoupled into sums of squares of multiple scalar differences as follows

min
w̃[1],w̃[2],...,w̃[r]

r∑
k=1

(σkw̃[k]− ỹ[k])2 (5)

3.3 Gradient Descent

The gradient descent update equation for the optimization problem in (2) with a learning rate η can be written as

wt+1 = wt − 2ηXT (y −Xwt) (6)

Similarly, the gradient descent update equation for the equivalent optimization problem in (4) can be written as

w̃t+1[i] = w̃t[i]− 2ηΣT (Σw̃t[i]− ỹ)

= (1− 2ησ2
i)w̃t[i] + 2ηΣT ỹ

(7)

Notice that the update rule is just written for the ith element of w̃. For the stability of the difference equation in
(7), we need

1− 2ησ2
i > −1 ∀ i

=⇒ η <
1

σ2
i

∀ i

=⇒ η <
1

σ2
max

(8)

Here σmax and σmin are the largest and smallest singular values of X respectively.
It can be seen from the above choice of η, 1 − 2ησ2

min can be close to 1 and the convergence might take an
extremely long time to converge along certain directions with small corresponding singular values. One of the ideas
to improve the speed of convergence is to use the concept of ‘momentum’ inspired from the ‘Proportional + Integral
(PI) action controller’ which is described in the next section.

3.4 Momentum based methods

Idea: Find a way to make the learning rate bigger without causing trouble for the large singular values.
Observation: The weights associated with the large singular values oscillate at high frequency as the learning rate
is increased. So, to dampen the oscillations out, a low pass filter can be added. It is known from circuit analysis that
a low pass filter outputs an exponential average of the input. This averaging can help us use larger learning rates
compared to gradient descent as averaging dampens out the oscillations due to large singular values.
Implementation:

w̃t+1[i] = w̃t[i]− ηat+1[i]

at+1[i] = (1− β)at[i] + β(“current gradient”)
(9)

For more intuition about The term “current gradient”, think about how the gradient was obtained in the previous
section on least squares.

Here at is the internal state which dictates the averaging behavior (exponential average) and β controls how fast
we average i.e., controls the weight given to the past events in the exponential average. This is very much similar to
the behavior of an RLC circuit. For momentum based methods, both the weight and internal state average gradient
are evolving. Note, there are several ways to mathematically implement this circuit.

3.5 Adaptive approaches:

There’s a limit to how much the learning rate can be increased even by the momentum based methods. Momentum
still respects SVD and the movement along the directions that are small is still small. The idea in adaptive approaches
is to change the learning rates for different singular values (different directions) - More about this in the next lecture.

3.6 Citation

• Sergey Levine’s slides (Fig 2-8), https://static.us.edusercontent.com/files/azVHcuABtM3V2ja2DrXVVo91

8

EECS 182/282 - Designing, Visualizing, and Understanding

Deep Neural Networks

Lecturer: Anant Sahai

September 15, 2022

Scribe: Hasitha Sithadara Wijesuriya

1 Momentum and Adaptive Gradient Descent Methods

Vanilla gradient descent has many benefits, but speed is not one of them. The reason behind that is
the constraint on the learning rate. This effect can be illustrated by solving the simple scalar equation
given in equation 1 which considers the squared loss as the loss function (L(w)). We want to minimize
L(w) over w until we get as close as possible to the ground truth (y).

σw = ŷ

min
w

L(w) = (y − σw)2
(1)

Gradient descent step at kth step is given in 2 with a learning rate (η).

wk+1 = wk − η∇wL(w
k)

wk+1 = wk + 2ησ(y − σwk)

wk+1 = (1− 2ησ2)wk + 2ησy(
wk+1 −

y

σ

)
= (1− 2ησ2)

(
wk − y

σ

) (2)

Then the wk+1 can be written in terms of the initial guess of w0 by considering the pattern in
equation 2, as below (3)

wk+1 = (1− 2ησ2)k+1
(
w0 −

y

σ

)
+

y

σ
(3)

In order to make sure the (3) is recurrence stable, −1 < (1 − 2ησ2) < 1 this condition should be
satisfied. From that, we get a constraint η < 1

σ2 . Figure 1 shows the behavior of gradient descent
update with the choice of η. As the η is small enough, the solution converges to the optimal solution
but takes a lot of iterations. But when η passes some value, it shows an oscillatory behavior, and after
increasing it further, it starts to diverge from the solution.

A slight modification called momentum for the gradient descent is applied to solve these problems.

1.1 Momentum

The idea of momentum is finding a safe way to make the η bigger. We know that the dimensions
with larger singular values start to oscillate quickly. So the thought is to somehow low pass filter
(LPF) those directions that would otherwise oscillate if we take smaller steps. By doing that, instead
of moving in the direction of the gradient, the update is moved towards the direction of the average
gradient. The functioning of the simplest LPF is where this idea of averaging originally came from,
Figure 2.

1

L(w)

with small η ; e.g. (0.99)k

L(w)

with bigger η ; e.g. (-0.9)k

with too big η ; e.g. (-1.1)k

L(w)

no. of iterations

no. of iterations

no. of iterations

Figure 1: Gradient descent update with the choice of η

V
in

V
out

R

C

Figure 2: Simplest Low Pass Filter (LPF)

We can solve the first order differential equation that governs the LPF on 2 by equation 4 with a
dummy variable τ . The exponential weighted average part is taken as h(t − τ), which is the impulse
response that defines the filter. Since h(t − τ) is an exponentially weighted average of the Vin, the
dying exponential has lesser weight as the τ gets further into the past.

Vout(t) =

∫ t

−∞
Vin(τ)

e−
1

RC (t−τ)

RC
dτ

Vout(t) =

∫ t

−∞
Vin(τ)h(t− τ)dτ

(4)

This is also known as convolution integral as what it does is sliding along the input and taking
averages by re-centering the input to t. And it integrates to 1 as it expresses a normalized average.
In the discrete-time point of view, we can write 4 as a sum, equation 5. The geometrically dying
exponential (h(t−τ) can be written with normalization parameter β as shown in 5. β(1−β)t−τ makes
sure that sums to 1.

Vout(t) =

t∑
−∞

Vin(τ)β(1− β)t−τ (5)

This discrete time solution is also the solution to a first-order difference equation. Instead of input
Vin we can plug in the gradients of L(w) at current step, equation 6. β controls the averaging, as
closer it gets to zero, the more averaging we get through the recurrence relationship of past gradients
given by ak.

ak+1 = (1− β)ak + β∇wL(w
k) (6)

2

This momentum term ak+1 is used to update the (k + 1)st gradient update rather than directly
using the gradient as in vanilla gradient descent, equation 7.

wk+1 = wk − ηak+1 (7)

In this case, we have two hyper-parameters that can be adjusted, β & η. With the appropriate
choice of β, we can increase the η than the limit imposed in vanilla gradient descent. The slower
directions converge faster by allowing that increment, increasing the overall speedup.

The current gradient used in 6 can have two interpretations depending on which variant we want
to use. The two variants are ”Vanilla momentum” and ”Nesterov Momentum”, equation 8.

”Vanilla” Momentum ∇L(wt)

”Nesterov” Momentum ∇L(wt − η(1− β)at)
(8)

The vanilla momentum uses the gradient where the current weights are. In the Nesterov momentum,
we take advantage of the fact where we are going by peeking into the future, as given from the first
part of the momentum term (6). This is because we already know where we are going to end up, and
by taking that new information to the calculation of the gradient at this step, we can take a bit of an
advantage on learning.

1.2 Adaptive (e.g. Adam) Methods

The simple perspective of the origin of the adaptive methods comes from the fact that even with
momentum, the largest singular value and the smallest singular value are the ones that govern the
process. Values in between are not relevant for setting up the parameters. So the simple idea is
that instead of having a single step size, use different step sizes (ηi) along different dimensions of the
parameter vector. In vanilla gradient descent, we go down in the steepest gradient direction. But in
the adaptive methods, we no longer go in the steepest direction but still in a downward direction.

The formulation of Adam’s method where different step sizes in a different direction are shown in
equation 9. In the large gradient directions, it takes smaller steps and vice versa. That way, it takes
evenly sized steps along different directions. To track the size of the gradient, a vector V⃗ is introduced,
which depends on the element-wise product of the gradient vector. Then the gradient update for the
ith parameter is computed with the square root of elements of V⃗ to make the units right. A constant
(ϵ) is added to the denominator to make sure it is stable.

a⃗k+1 = (1− β)⃗ak + β∇wL(w
k)

V⃗k+1 = (1− β′)V⃗k + β′∇w

 · · ·(
∂L(w)
∂wi

)2

· · ·

wk+1 [i] = wk [i]− η

ak+1 [i]√
Vk+i [i] + ϵ

(9)

Typically β′ << β, to make sure the average size of the gradient is over a longer period than the
average gradient. Otherwise, it would create oscillatory movement when it is closer to the convergence.
This can be observed by the numerator and the denominator in the weight update step. Also, this
creates another challenge when the β′ is very small (which is typically the case). In the start, this

creates problems as the V⃗ is going to be small for a while until it builds up. This is partially protected
by the (ϵ). The solution for this problem is normalizing, as shown in equation 10. This normalization
dies away as the iterations keep going but solve the problem at the start.

3

ˆ⃗ak+1 =
a⃗k+1

1− βk

ˆ⃗
Vk+1 =

V⃗k+1

1− (β′)k

wk+1 [i] = wk [i]− η
ˆ⃗ak+1 [i]√
ˆ⃗
Vk+1 [i] + ϵ

(10)

2 Convolution neural networks

Convolutional Neural Networks (CNN) is a class of neural networks that is most commonly used
to analyze images. Why do we need CNN’s in the first place? Figure 3 shows the naive approach
to analyzing images. As the input is high dimensional and it itself is very big. For an image with
128×128 resolution with three color channels, it has around 50,000 pixels. If we approach this problem
with a fully connected network, we get roughly around 3 million weights for the first layer. And it is
very large for just one layer. That is why people adopt the idea of convolution for analyzing images
with fewer weights.

Figure 3: Naive approach with images [Lev21]

As the goal of any neural network, the objective is to learn the pattern in our data. And our
objective is to build an architecture toward the kind of patterns we expect to see. There are several
ways that CNN’s achieves this objective, as shown below.

• Respecting ”locality”

In the learned functions, the pixels that are near each other are important to figure out the rela-
tionship of the learned function. This idea is manifest as the convolution structure itself. Figure 4
shows the local features in small neighborhoods inside of an image. If we learn a very narrow field of
view of an image, we sometimes see edges as the edges are the smallest local signature that we can
observe. when we make the network deeper, it sees the larger and larger parts of the image, and we
can maybe start observing parts of the objects.

• Respecting ”invariances”

This idea can be simply explained as the learned function should not be affected by the translation
of objects within the dataset. For example, in the case of a classifier, it should give the same prediction
even if the object has moved within the input image. This idea is manifested by weight sharing and
data augmentation during the training process. Figure 5 shows the idea of weight sharing. If we have
different blocks with different weights for every patch of the image, that doesn’t capture the idea of
invariance. If we use the same patch to cover the whole image by shifting the patch by a pixel at a
time, it is much more tractable to lift it to the 64 channels. And it is a much more reasonable number
of parameters.

4

Figure 4: Locality in CNN’s[Lev21]

Figure 5: Idea of weight sharing[Lev21]

• Support hierarchical structure and multi-resolution understanding

This idea is explained as the patterns that we are trying to learn are visible not at the level of
local level but only when we see the whole image. For example, the edges can be identified at the
local level, but the parts of the objects we are considering are only visible at another level, and the
object themselves is only visible at the global level. This manifests as the combination of depth of the
network, downsampling with depth (stride and pooling), and lifting from pixel space to abstract level
by increasing the number of channels with depth.

• ”Room to play” & ”redundancy”

This idea is during the learning process, if things are too tightly constrained, we are usually stuck
in local minima, and it is hard to move on from there. As the learning process is going, we should be
able to have room to build new features to get it solved. In other words, we should have redundancy
to work on different features as we progress with our learning. This manifests as the combination of
adding more channels and a particular way of learning called dropouts.

3 What we wish this lecture also had to make things clearer?

• It would have been great if we could see the real-time demonstration of the effect of momentum
on gradient descent as shown on this website. https://distill.pub/2017/momentum/

• Also, using the tools in https://alexlenail.me/NN-SVG/LeNet.html, we could have seen a clear
demonstration of CNNs that covers the weight sharing, number of channels per layer, etc.

References

[Lev21] Sergey Levine. Lecture notes in designing, visualizing and understanding deep neural networks.
https://cs182sp21.github.io/static/slides/lec-6.pdf, January 2021.

5

https://cs182sp21.github.io/static/slides/lec-6.pdf

Lecture 8: 09/20 (Tuesday)

Lecturer: Prof. Anant Sahai

Scribes: Daisy Zhang

1 Agenda

Topics covered last time were Key ideas & Convnet manifestation. Today, we continue with Con-
vnets, focusing on input standardization and activation normalization. The lecture included the
following topics:

• Respect locality

• Respect ”invariance” within data for problem domain

• Support hierarchical structure (Fine → Coarse)

• ”Room to play”

which are related to the following realization techniques:

• Convolutional Structure

• Weight-sharing

• Data Augmentations

• Down Sampling

• Lifting to more channels as we get coarse

• Diversity to support learning

• Dropout

• More layers

2 Locality

We have the observation that many useful image features are local. To tell if a particular patch of
an image contains a feature, It is enough to look at the local patch. We get a different output at
each image location using the same filter. We assume locality exists in CNN, where inputs that are
more close to each other are more correlated. In the context of image inputs, this assumption is
qualitatively valid because of local patches of similar color, texture, or lighting. Figure 8.1 shows
an example of locality.

8-1

8-2 Lecture 8: 09/20 (Tuesday)

Figure 8.1: This picture of a dog shows that the nature of locality and hierarchy in vision inputs.
Locality is exemplified by that most of the local patch in the leftmost picture has similar texture
and lighting. Hierarchy is exemplified by that edge features in Layer1, the middle picture, can
zoom out and form larger features such as ears and noses in Layer2, the rightmost picture. Image
from Lecture8 slides.

3 Weight sharing

Weight sharing in CNN is that a convolutional kernel or filter scans across the whole image input
and produces a feature map, so every neighborhood of pixels in the image is processed by the same
kernel or filter. That is, the weights in the kernel or filter are shared. We don’t assign weight to
each individual pixel.

Example: Suppose we have a 5x5 gray-scale picture and a 3x3 kernel (Figure 8.2). We apply
the kernel to one pixel of the input image and its surrounding local patch with the same size as
the kernel. We get a number from the previous calculation, add the bias, apply non-linearity, and
we finally get the new output of one depth of that one pixel of the image. When the image has
multiple channels and each channel is convolved with a different kernel, this operation is called
depthwise convolution.

Figure 8.2: Example of a 3x3 convolutional kernel applied to a 5x5 input. The padding size is 0.
Image from [2]

The weight-sharing structure provides translational equivalence. The resulting activation map
remains the same under the translation of input feature map. Weight sharing also significantly
reduces the number of weights of the network, which ensures higher computational speed.

Lecture 8: 09/20 (Tuesday) 8-3

Figure 8.3: A 5x5 input with padding size 1 is applied with a 3x3 kernel, then generates a 3x3
output. Image from [1]

Sometimes, the padding operation is introduced. Padding is the addition of crafted pixels on
the sides of the image so that the pixels on the borders are not lost from the output of convolution.
Padding size is usually one less than kernel size. If the crafted pixels are all zeros, this operation is
called zero-padding. If the crafted pixels are mirrored values from the original input, this operation
is called mirror-padding. Deep learning application typically uses zero-padding for practice.

Figure 8.3 shows an example of convolution operation with padding.

Note: depth of one input/output layer in the CNN is a term for the number of channels of the
layer. For example, the depth of an RGB image is 3.

4 Support hierarchy

Receptive Field is a term borrowed from biological vision. A particular pixel of the output generated
by the neural network has a dependence on some, but not all pixels in the input. So this term
defines what pixels in the original image this output depends on. Figure 8.4 is an example of
receptive field.

Figure 8.4: The yellow pixel in layer 3 has its receptive fields colored in yellow in layer 2 and layer
3. The green pixel in layer 2 has its receptive field in layer 1 colored in green

If we keep adding convolutions layers on the images, the receptive field will grow linearly.
However, linear growth is slower than desired. Faster growth is desired because the neural network
can easily learn the full hierarchy.

Therefore, we need a way to do dimensionality reduction on feature maps, i.e., down sampling.

8-4 Lecture 8: 09/20 (Tuesday)

For example, if we want to transform a 2x2x4 region of the output into a 1x1x4, we need to represent
2x2 elements with 1 pixel. This is also known as pooling.

There are several ways for pooling, including

• average

• max

• pick-one, i.e., pick the pixel at a certain location of the computed local patch, and discard
the rest

• weighted average

Pick-one pooling seems a waste of computation because it discards most of the computed pixels.
This method of pooling is implemented by stride instead, which only computes the pixel at the
desired location to save time and computation.

The weighted average can be viewed as a convolutional layer and a stride.

Pooing layers make the receptive field grow exponentially. In addition to dimensionality reduc-
tion, pooling also provides local translational invariance, allowing the CNN to be more robust to
features varying in their locations.

5 Structure summary

1. Convolutional layers

(a) A way to avoid needing millions of parameters with images

(b) Each layer is ”local”

(c) Each layer produces an ”image” with roughly the same width and height, and number
of channels = number of filters

2. Pooling: moving from fine to coarse but more abstract

(a) If we ever want to get down to a single output, we must reduce resolution as we go

(b) Max pooling: downsample the ”image” at each layer, taking the max in each region.
Max is differentiable. It stops gradient descent to the smaller value which it discards, so
it ensures the gradient descent to the important feature.

(c) This makes it robust to small translation changes.

3. Finishing it up

(a) At the end, we get something small enough that we can ”flatten” it (turn it into a
vector), and feed it into a standard fully connected layer.

(b) Suppose the input size is W , the kernel size K, the stride S, and the padding P . Input
and kernel are both squared.

Then the output size is
W −K + 2P

S
+ 1

Lecture 8: 09/20 (Tuesday) 8-5

6 Data Augmentation

Regularity is needed for the neural network, which is the invariance to some insignificant changes
to our knowledge. For example, it is expected that a pattern can still be recognized when it shifts
horizontally by 2inches. However, these insignificant changes are not present in the training set.
Data augmentation can apply these changes to the input images and feed the newly generated data
to the neural network to train for robustness.

In practice, in order to save space, the newly generated images are not stored along with the
original huge dataset. These images with data augmentation applied are generated on the fly.
Modern deep learning applications typically never see the same image twice, because all data have
been augmented during the training. During data augmentation, the label along with the input
image normally does not change.

Data Augmentation represents some of the easiest ways that people can transfer the domain
knowledge into the training process. We humans understand what are insignificant features by our
evolved vision system. This knowledge can be encoded into the practice of data augmentation and
drop it into the training. This practice can help the neural network know what is important based
on our knowledge.

Basic augmentations include autocontrast, rotation, translation, posterization, etc. Some basic
augmentations are exemplified in Figure 8.5. More aggressive augmentations include cutout, Mixup,
CutMix, and PixMix [3].

Figure 8.5: Examples of basic augmentations [4]

Figure 8.6: Examples of more aggressive augmentations [3]

8-6 Lecture 8: 09/20 (Tuesday)

7 Standardization and Normalization

Standardization is advised in almost all learning practices. Why do we need standardization? The
reason behind it needs to be known. To understand it, it’s necessary to know the answer to this
question: what tempts a neural network to learn?

Suppose we want to learn x ∗w and w is the parameter to learn. Then d
dwxw = x. Thus, larger

∥x∥ moves w more in gradient descent. We want to move w more only when we are confident that
it’s in the right direction. The largeness of ∥x∥ needs to relate to the essence of data. For example,
if x is a weight measurement, then its pure value is larger when its unit is mg than when its unit
is kg. However, in this case, we don’t want to update more on w, the parameter to learn, because
the largeness of data doesn’t reflect that it is importance.

Accordingly, when the input size (magnitude) does not carry confident and important informa-
tion, such as weight data in kg and in mg, we need to convert it to data with zero mean and unit
variance.

The design choice with zero mean and unit variance is good because 0 + 0 = 0 and 1 ∗ 1 = 1.
We want to make sure that the neural network is learning with the greatest sensitivity when the
dataset is essentially changing. For example, the elbow point of a ReLU network can capture where
the predicted values vary. It will be hard for a ReLU network to learn if the elbow points are not
aligned with the output action space. Standardization is a way to align inputs to where the function
can learn more easily.

The expressive power of the network is not lost with standardization and normalization. The
expressive power is embedded in the bias and the weight terms, which can shift the mean and
variance.

We perform standardization on the training set by subtracting the mean and scaling the variance
computed from the training set. We can use the same mean and variance from the training set to
normalize the validation set.

References

[1] E. S. Agency. Machine learning group: About machine learning: Convolutional neural networks
introduction.

[2] I. C. Education. Ibm cloud learn hub: What are convolutional neural networks?, 2020.

[3] D. Hendrycks, A. Zou, M. Mazeika, L. Tang, B. Li, D. Song, and J. Steinhardt. Pixmix:
Dreamlike pictures comprehensively improve safety measures. CVPR, 2022.

[4] A. Oberoi. What is data augmentation in deep learning?, 2022.

CS 282 Deep Neural Networks Fall 2022

Lecture 9: ConvNets/CV
Lecturer: Anant Sahai Scribe: Buyu Zhang, Michael Lam

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Input standardization, Normalization

A common maxim in machine learning is that input data should “always” be normalized, meaning the input
data should somehow follow a distribution with zero mean and unit variance, i.e. a transformation of the

form x → x−“E[X]”
“σ[X]” where subtraction by the expected value “E[X]” zeroes the mean, and division by the

standard deviation “σ[X]” unitizes the spread. But this normalization raises several questions. Why are we
even normalizing in the first place? Where do “E[X]” and, by extension, “σ[X]” come from?

9.1.1 Reasons for Normalization

Aside: Confidence in training points
Before we delve into ways to normalize our data, let’s look at a toy example that demonstrates the motivation
for normalization. Consider the following standard least squares problem:

X−→w ≈ −→y (9.1)

Suppose we know measurement y[2] to a greater degree of confidence, i.e.

y[2] = ytrue[2] +N(0, 0.01), (9.2)

while other data points are described by

y[i] = ytrue[i] +N(0, 1), i ̸= 2 (9.3)

How can we modify our ordinary least-squares algorithm to take advantage of this information? Intuitively,
we’d like to somehow weight y[2] more heavily since it carries more “information”, in a sense, because we’re
more confident that it is close to the true value.

To do this, notice that the variance of y[2] is 0.01 times that of all the rest of the data points. If we multiply
the second data point and its corresponding entries in X by 10, the variance of y[2] will now equal one (keep
in mind that variance scales with the square of the data point’s scaling factor). Not only that, but our
second training point will now be weighted 10 times more than it was before.

10× y[2] = 10× ytrue[2] + 10×N(0, 0.01) = 10× ytrue[2] +N(0, 1) (9.4)

Solution: Multiply second row of X by 10, second row of y by 10, do standard least squares.

9-1

9-2 Lecture 9: ConvNets/CV

Things to consider: What if we instead duplicate the second data point and its corresponding entries in
X 10 times? How many times must we duplicate the point for the effect to be the same as scaling by 10?
Is this effective when the feature space is large? (In general the effect of duplicating a datapoint will be
dependent on the total number of datapoints. Duplicating a datapoint is a better choice for a non-linear
model.)

We demonstrated in the above aside that it was possible to preprocess the data such that a specific data
point which we know with high confidence can be weighted proportionally to its spread. Note that, in doing
so, the data point now has a mean of zero and unit variance. But that’s exactly what normalization is!

In the toy example above, normalization had the effect of correctly weighting points based on their importance
(in this case, confidence). Normalizing our training data before inputting them into neural networks has a
similar effect of scaling the parameters such that the raw magnitudes of the values don’t necessarily impact
the gradient calculation during the gradient descent backpropagating step (if we had massive, un-normalized
values, the gradient would always be large). Moreover, the data points are generally centered at zero because
the ReLU layers are often initialized at that point, making the neural net most sensitive and expressive when
input values are around zero. Thus, normalization can additionally decrease the neural network’s training
time.

Food for thought: We often normalize our data beforehand because we don’t expect the magnitude of the
values to have any value in the classification process, but this isn’t always true. Can you think of an example
where normalization would preclude accurate classification?

9.1.2 Choices for “E[X]”

We are not generally provided with prior knowledge of the probability distribution from which our sample
X data are drawn, so these values must be derived empirically, i.e. from the data set X itself during training
time. Let us focus firstly on ways such an empirical average E[X] can be derived.

Consider the following scenario where we have n 100 x 100 images in our data set, each with 3 channels:
red, green and blue, with values between 0 and 255, inclusive. The following are ways we can compute an
empirical expectation for any given point in any image:

1. For any given position (x, y) in channel i, take the expected value corresponding to that
point to be the average of the channel i values at (x, y) across all images, i.e. the expected
value for position (50, 50) in the red channel is the average of the red values at (50, 50) across all images.
This can be done across our entire data set, with or without the addition of augmented images.

2. Use the numeric midpoint of the range as the expected value for all positions (e.g. choose
128 for range 0-255). This method is simple, but it assumes that the color values across all images
are distributed evenly around the middle of the range. Consider what might happen if our data
set consisted only of dark images (images with channel values between, say, 0 and 12). Would our
normalization still be centered at 0?

3. Take the expected value for position (x, y) at channel i to be the average of all the channel
i values for that image. For example, for any given image, the expected value for position (50, 50)
of the red channel would be the average of the red channel value across all positions of that specific
image.

4. Set the expected value to be an average of the values within a local patch of pixel positions
in the same channel within the same image. For the expected value for position (50, 50) in the
red channel, we may want to take the average of a 3 × 3 patch centered at that coordinate, i.e. the
rectangle [49, 51]× [49, 51].

Lecture 9: ConvNets/CV 9-3

Food for thought: What are some of the advantages/disadvantages of some of the expected value definitions
listed above? Especially for the definitions that average within a single image, what information may be lost
in the normalization process?

Note: You may be wondering whether normalization may change the input in a way that reduces the
information it contains and derails the optimization process. The good news is that our normalization,

defined as x−“E[X]”
“σ[X]” , is composed of subtraction and division functions that can be undone by our biases

and weights, respectively. Keep in mind that there are important exceptions given how our convolutional
networks are structured. For example, due to the moving nature of the filter, there is no way for an expected
value defined as the average of a particular position across all images (option 1 listed above) to be reversed.
However, an average taken across all positions in all images would be reversible. Can you come up with any
other examples?

These are just a few of the more common ways to compute an empirical expected value. Note that the
empirical variance is calculated analogously, except, instead of averaging, we take the variance across a
certain subset of points. There are myriad other definitions depending on the specific application, some of
which are combinations/variations of the ones listed above. For example, for a much coarser average, we
could define E[X] to be the average of all values within the image across all channels (a variation of option
1). One could also imagine averaging across all channel positions across all images as an extension of this
definition. When choosing what type of normalization to use for a specific problem, it is considered good
practice to use whatever method has given good results for a similar problem in the past.

Each expectation calculation scheme can be seen as different ways to span 3 axes: the image positions, the
image channels, and the different images within the data set (Figures 9.1-9.4). For example, we can visualize
expectation (3), the average of the values at all positions in one channel for one image, as a prism that spans
all positions, 1 channel, and 1 image (Figure 9.1). A few other examples are listed in Figures 9.1-9.4.

Figure 9.1: Demonstration for option 3. Figure 9.2: Demonstration for option 4.

9-4 Lecture 9: ConvNets/CV

Figure 9.3: Variation of option 3.
(Averaging all images)

Figure 9.4: Variation of option 3.
(Averaging all channels)

9.1.3 Normalization methods

Some of the more common normalization methods have special names:

• Batch normalization
Batch normalization normalizes the contributions to a layer for every mini-batch.
At training time, the gradients are not calculated for all data at one time; instead, a batch of data
is used. A batch normalization layer uses a mini-batch of data to estimate the mean and standard
deviation of each feature. These estimated means and standard deviations are then used to center and
normalize the features of the mini-batch. A running average of these means and standard deviations is
kept during training, and at test time these running averages are used to center and normalize features.
The batch normalization will become unstable when the batch size is too small.

• Layer normalization
Layer normalization normalizes input across all channels in one image.

• Instance normalization
Instance normalization normalizes across each channel in each training images. The problem instance
normalization tries to address is that the network should be agnostic to the contrast of the original
image.

• Group normalization
Group Normalization normalizes over a group of channels for each training images.
Group normalization is a medium between Instance normalization and layer normalization. When we
put all the channels into a single group, group normalization becomes layer normalization. When we
consider each individual channel a single group, it becomes instance normalization.

Lecture 9: ConvNets/CV 9-5

Figure 9.5: Normalization methods. Each subplot shows a feature map tensor, with N as
the batch axis, C as the channel axis, and (H, W) as the spatial axes. The pixels in blue are
normalized by the same mean and variance, computed by aggregating the values of these

pixels.[1]

9.1.4 Weight Standardization

What we talked before is input standardization. Another way to control the movement of gradient descent is
weight standardization. Instead of applying the weights directly during the gradient calculation, the weights
are normalized beforehand, preventing weights from getting too big.

9.1.5 Deep Net Structure for Convolutional Neural Nets

Figure 9.6: Deep net structure for Conv-nets

We’ve established that normalization in the input layer centers the data where the ReLU elbows are most
active, but do we need to normalize each layer in the convolutional net (Figure 9.5)? After all, the output
of each layer is the input to the next layer, and the repeated applications of the weighted convolutional
layers can very quickly lead to an output that is, again, extremely small (leading to a problem known as the
vanishing gradient) or very large (the exploding gradient).

The solution is to not just normalize the initial training data, but to also normalize the outputs of interme-
diate convolutional layers. Intuitively, normalizing after every layer in the network should solve the problem,
which was exactly what early researchers placed did. But since gradients don’t tend to get extremely large or
small over the course of the application of at least a few weighted convolutional layers, adding normalization
at the very start and after every few layers is sufficient and is what is typically used in modern networks.

9-6 Lecture 9: ConvNets/CV

Aside: Large singular values
Consider the singular value decomposition of an arbitrary output matrix X:

X = UΣV T (9.5)

The diagonal entries of Σ are the singular values of the matrix X, which is incidentally related the X’s
Frobenius norm, a measure of matrix’s “mass”, or the magnitude of its entries. There are two ways these
singular values can get very large:

1. A few columns of the X have extremely large magnitude. The corresponding singular values
for these columns would then be correspondingly large. This is the case where a few data points are
much larger than all the others.

2. All the columns are close to being collinear. If many of the data points fall on the same line, the
singular value corresponding to that direction will be large. This is the case when most data points
follow a certain trend.

Normalization helps to ensure that large singular values come not from the former case, but from the latter.
Gradient descent is thus more robust against large, outlying data points and more sensitive to strong trends.

9.2 Residual network

Another way to combat the effects of the vanishing/exploding gradients is the introduction of skip connec-
tions, bridges that allow the output in one layer to be the input to not just the layer immediately subsequent,
but also to layers further down the net. In a network without skip connections, gradient updates must pass
through all subsequent layers before reaching the weights of the current layer, which may lead to a gradient
update that is minuscule. Skip connections make the weight layers more sensitive to gradient updates as the
gradients have to backpropagate through much fewer layers of the network during the gradient calculation
and are therefore much less likely to get extremely small from repeated applications of weight layers. Figure
9.7 contrasts the structure of the plain net with that of a residual net.

Lecture 9: ConvNets/CV 9-7

Figure 9.7: Plain net (left) and residual net (right).[2]

References

[1] Yuxing Wu, Kaiming He, Group Normalization, Proceedings of the European conference on
computer vision (ECCV) (2018).

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren,Jian Sun, Deep Residual Learning for Image
Recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016).

CS282A Lecture 10 Notes (09/27)

Matan Grinberg and Shruti Satrawada

September 2022

1 Residual Nets and their advantages

From last lecture, we recall the ResNet architecture.

Figure 1: Overview of Residual Net architecture.

The modern convolutional neural network era was ushered in by the idea that each successive layer modifies the data in the
pipeline, as opposed to completely transforming it.

We can also see how depth affects plain nets versus residual nets in Figure 2. An issue people found (that motivated this new
residual architecture) was that in plain nets, introducing new layers created more error instead of creating more expressivity.

1

Figure 2: Effect of depth on error in CIFAR-10 experiments for plain nets and ResNets.

With this new residual net architecture (cf. Figure 3), each successive layer no longer completely transforms the data.
Instead, through the use of the skip-connection, an identity operation is applied and added to the actual output of the layer.
The effect of this is allowing the network to less dramatically modify the data in the pipeline, which in turn allows the depth
of deep networks to more consistent learn salient features of the data.

Figure 3: Difference between plain and residual architecture.

The derivative for a given layer of a residual net takes a form similar to that of Neural ODEs:

d

ds
x(s) = F̃s(x(s)) , (1)

where s is a fictitious “time” that signifies x going through the net and F̃s is learnable.

Now, as the number of these layers increases, do we eventually reach convergence? In other words, with enough layers, do
things stop changing? We cannot in fact make general statements about the steady-state behavior of such deep networks.
This is mainly due to the fact that we also cannot make any such guarantees about the behavior of ODEs of the form shown
above. However, we can say if the residual blocks are small and get smaller in successive layers, then we would be able to
make some guarantees about convergence.

2

2 ConvNeXt

2.1 Introducing ConvNeXt

A new architecture emerged that borrow from the success of transformers (without the actual transformer part). It differs
in architecture from the residual net as shown in Figure 4.

Figure 4: Residual net versus ConvNeXt. (Image from He et al.)

It is important to note that in ConvNeXt, instead of using the traditional batch normalization and ReLU activation, layer
normalization and Gaussian ReLU (GeLU) are used. Furthermore, the 7 × 7 convolution is done within each channel,
as opposed to across the channels (this is signified by the “d” in front of d7 × 7). Furthermore, ResNet has convolution
operations taking place in the middle of the pipeline, whereas ConvNeXt has convolution in the beginning. This ultimately
allows ConvNeXt to save a factor of 64 in parameters space, while also using and only one activation layer.

2.2 GeLU: Gaussian ReLU

We saw a new form of ReLU in the ConvNeXt structure called GeLU which stands for the Gaussian Error Linear Unit and
is calculated by

x · Φ(x) (2)

where Φ(x) represents the Gaussian CDF of x.

Theoretical Inspiration for GeLU: For ReLU we take the max(0, x), but why 0? Why not pick something else to act as our
”gate” to decide whether the value x is passing through? Lets randomly draw a Gaussian, N. If x is greater than N, we pass
the value through, and if not we return 0. GeLU is the expected value of this.

As can be seen in Figure 5, the GeLU curve is smoother than the ReLU curve, is non-convex and has a non-monotonic gradient.

This new formulation is discontinuous like ReLU.

Figure 5: Graph comparing RELU versus GELU. Original Source: Wikipedia by Ringdongdang

3

2.3 Depthwise Convolution

In Depthwise Convolution, filters and inputs are broken into different channels, convoluted separately, and then concatenated.

In the ConvNeXt structure, Depthwise Convolution is used instead of typical convolution as it is less computationally
demanding. In general nowadays, Depthwise Convolution is more commonly used than typical convolution. The difference
between typical convolution and depthwise convolution is visualized in Figure 6

Figure 6: Regular Convolution versus Depthwise Convolution. Source: Lecture Slides.

2.4 Wrapping up ConvNeXt

Since ResNets in 2015, newer models like the 2022 ConvNeXt have improved performance as seen in Figure 7.

These newer models take bits and pieces from the old models. For example residual connections from ResNets are still
common. However, there have been changes made as well, with depthwise (grouped) convolution being more common now
than typical convolution.

ConvNeXt uses a cosine learning rate schedule, AdamW (Adam with weight decay), label smoothing, a type of dropout
called Stochastic Depth Regularization, and aggressive data augmentation, all helping lead to higher accuracy.

Figure 7: Performance of ResNet versus ConvNext on ImageNet-1K Acc. (Image from Liu et al, 2022)

4

3 Dropout

3.1 Dropout(basic)

Inspiration How can we simulate having an ensemble of diverse neural networks that we output the average of, like in
Random Forest, in a method that’s less costly? By utilizing dropout, there is essentially a slightly different neural network
at each training step which provides an ”ensemble-like” behavior.

Implementation

• During Training: While training on our minibatch, randomly ”kill” certain units by setting them to zero before training.
We will have a hyperparameter that provides the probability of ”nulling” out a unit. When we ”kill” a unit, all the
attached weights do not get updated and we can think of the remaining weights ”shaking” a bit to pick up the slack.

• Evaluation: The standard way evaluation is done after dropout is to use expected behavior.

– Example: Lets say we’re killing certain units with probability 1
2 . This means that our unit, x, is outputting 0

half the time and ReLU(x) the other half of the time. We can calculate the expected behavior of our unit as
1
2 ·ReLU(x) + 1

2 · 0. This essentially halves the output of our neuron during evaluation to account for us ”nulling
out” half the neurons while training.

Results of Dropout Dropout promotes diversity and redundancy in networks since at each training step we are essentially
training a different neural network. It ensures that it isn’t one unit’s job to learn everything since that one unit can’t always
be relied on. It has a regularizing effect and is usually only used for MLPs (multi-layer perceptrons) on 1x1 blocks.

Does Dropout make training slower? No. Learning rate and dropout are trained together, so while dropout does reduce the
size of our gradients, the learning rate can compensate for this.

Can Dropout hurt the performance? All regularization techniques have the ability to hurt performance since they shape the
inductive bias. Depending on what we are modeling dropout can affect the performance differently. For a brief period of
time, people thought that Normalization might negate the need for Dropout, but in practice having both performs better.

Mathematical Reasoning Behind Dropout In another lecture we discussed that we can think of our training algorithm
seeing some version of the big singular values that are defined in the inductive bias. Generally for a matrix there are two
ways you can have a large singular value. Either you have many different things pointing in the same direction, or you have
one particular row or column that has a big value. Dropout drives us towards the direction of having lots of little things
pointing in the right direction.

3.2 Stochastic Depth Regularization

Implementation During training randomly drop entire residual blocks. So during training some will be active and being
trained while others are ”gone”. Very similar to Dropout but on a different scale.

3.3 Other Methods Similar to Dropout that Have Been Explored

• Drop Connect: Instead of ”killing” certain units why not try ”killing” weights? People have found that in practice
this does not work as well.

• Another method that also adds the regularizing effect we see in Dropout is to multiply by random noise (in between 0
and 1) instead of multiplying by 0. Dropout tends to perform better in practice.

• What if we have logic behind what we turn off instead of randomly choosing? People have explored ”killing” units
more or less often based on what the size of their activation’s tend to be as well as other similar ideas, but these have
not been proven to be useful in practice so far.

5

4 Label Smoothing

4.1 Before Label Smoothing: One Hot Encoding

For Classic Cross-Entropy/Log-Loss Classification when we have a label ”class 1”, we represent this using one hot encoding.
Since one hot encoding has an array of 0s with a 1 for the correct label as a goal instead of probabilities, it forces the model
to try and be ”super” confident. This means that the model will constantly be trying to get closer and closer and since with
softmax we cannot actually reach a probability of 1 unless the input is infinity, the model will never be to reach the goal
classification.

4.2 Label Smoothing

Label smoothing is an approach that fixes this by using probabilities in the goal array for our classification so our model can
actually reach its goal.

We set our goal array y as follows:

y = [
1− α · k − 1

k
,
α

k
,
α

k
,
α

k
, ...]T

where k is the number of classes and α is a hyperparameter

Reaching this goal y array is possible and in practice label smoothing does improve performance. We can think of the
behavior as now being more similar to squared-error since they can both be satisfied.

Concern: Originally, people were concerned about this idea since in the real world some items are more similar than others.
For example, a dog should be more similar to a cat than to the ocean. With that in mind, we can see that label smoothing
tries to say that something is a dog but has an equal small probability of being either a cat or ocean when logically we would
expect the probability for the cat to be higher.

6

CS 282 Deep Neural Networks Fall 2022

Lecture 11: GNN
Lecturer: Anant Sahai Scribe: Jiashu Liang, Anirudh Rengarajan

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

11.1 Key ideas of the Convolutional Neural Networks (CNNs)

Images have a structure with patterns that we want to learn and we need to create inductive biases to help
us learn the structure. The key ideas including:

1. Convolutions with weight-sharing AND having an “image” at each layer: build the local convolutions
and then use hierarchical depth to see the entire image

2. Residual Connections to fight dying gradients: every layer has an effect when parameters change on
what happens at the end

3. Normalization to “adaptive speed bump” exploding gradients: brings down growing activation values

4. Pooling to downsample: allowing distant information to more quickly get used

• Max Pooling

[
MaxPool(

a b c
d e f
g h i

) = max(a, b, c, d, e, f , g, h, i)

]
: “routes” gradients to

specific parts of images

5. Data Augmentation, Dropout (including stochastic depth regularization), Label Smoothing

Food for thought: What is the conceptual similarity and difference between Residual Connections and
Pooling?

Residual Connections and Pooling can both allow the gradients to depend on more things. You can
also realize the effect of Residual Connections by Pooling (i.e., sum pooling all the layers before each layer).
However, this will result in quadratic intrinsic growth of the gradients.

11.2 Graph Neural Networks (GNNs) as the “generalization” of
CNNs

11.2.1 Basic GNN model

Instead of a 2D grid for an image, we have a graph with information in nodes. First, we can have a Simple
Assumption as follows.

11-1

11-2 Lecture 11: GNN

Simplifying Assumption: We can define a Single Graph topology. A graph can be defined by a tuple (V, E)
where V is the set of all nodes and E are the set of all edges that connects the nodes in V. For GNN, we
attempt to do a Graph-level classification task based on information in nodes and connections between said
nodes.

An example of a GNN in a Single Graph topology can be shown in Figure 11.1. The nodes are connected
with the black lines in the same layer. Then each node in the next layer is connected to its neighbors in the
previous layer (dotted red lines) and itself in the previous layer (dotted black lines).

Figure 11.1: Example GNN showing connections inside a layer and between layers.

11.2.2 Differences between CNNs and GNNs from a Neighbor Perspective

What is different about “me” in these instances:

CNN:

a b c
d me f
g h i

 vs. GNN:

• We might have different numbers of neighbors to “me”. In contrast, one pixel of an image usually has
eight neighbor pixels in CNNs.

• We don’t have separate names for neighbors of “me”. This means that the neighbors do not have
a particular order in GNNs. In contrast, the eight neighbor pixels of one pixel have their particular
position in CNNs, like the pixel “b” is on the top of “me” and the pixel “f” is on the right.

Lecture 11: GNN 11-3

11.3 Extension of key ideas of CNNs to GNNs

11.3.1 Weight sharing

The most important idea behind CNN is the convolution with weight-sharing. What kind of function can
we have in place of convolution, respecting the properties of a graph?

1. First, this function should have some learnable parameters associated with it (like w1 in Eqn 11.1a).

2. Second, it should take two arguments, the node itself and its neighbor nodes, because these are all the
information we know related to this node.

3. Then, a method is needed to combine the information of these neighbor nodes regardless of the ordering
or cardinality of neighbors. This method is not learnable and we need to choose from possible choices,
including Sum (used in Eqn 11.1a), Maximum, Minimum, Product, Softmax, Variance, and so on.

4. Finally, neighbor nodes also have their learnable function, gw2(neighbor node).

These requirements lead us to Equation 11.1a, where “me” represents the node itself and “them” represents
one particular neighbor node.

fw1
[me,

∑
neighbors

gw2
(them)] (11.1a)

fw1 [me,
∑

neighbors

gw2(me, them)] (11.1b)

fw1 [me,
∑

neighbors

sw2(me, them)gw3(them)] (11.1c)

More generally, gw2
can depend on “me” and “them” together to explain their connections, as shown in

Equation 11.1b.

We can further factorize gw2
(me, them) into sw2

(me, them) and gw3
(them) and get Equation 11.1c, where

gw3
(them) is regarded as the learnable function of “them” and sw2

(me, them) is regarded as the connection
(or similarity) of “me” and “them”. In Transformer Architecture, sw2

(me, them) is also known as “attention”
because it is a learned amount of how much we pay attention to this neighbor.

We can also understand
∑

neighbors sw2
(me, them)gw3

(them) as a weighted average of gw3
(them) with sw2

(me, them)
as the weights. We can even use these weights to do softmax.

11-4 Lecture 11: GNN

Food for thought: If we view the GNN in an adjacency matrix formulation, is there a way to use our usual
CNN weight operations more directly?

Answer: There is a way to leverage adjacency matrix formulation with use-cases in
graph signal processing for signal reflection.

Researchers have generalized the idea of signal processing from one- or two-dimensional functions to
general graph relationships. A convolution can be seen as an operation that respects the natural shift
invariance on the infinite topology. The infinite topology means that the signal can keep going to the right
or left. For a graph, there is no information about what the natural shift would be but there is indeed
something we can do with the adjacency matrix. We can take a walk on the graph, or we can take products
of the adjacency edge and itself. We can think of shifts on a graph as a kind of repeated product on the unit
line. As an example, we can generalize the infinite line to the finite line by shifting on the circle because we
can rotate on the circle.

There is also a beautiful connection between convolutions and the invocation of a different domain
called frequency domain convolutions. In signal processing, convolution in the original domain corresponds
to the multiplication in the frequency domain. But it turns out that the frequency domain is just the
eigenbasis corresponding to a particular matrix associated with the structure because convolutions commute
with each other and can share the eigenbasis. This allows people to consider what actions can commute with
such a matrix formulation of a graph network, with one such formulation being the adjacency matrix. So
you could imagine what operations (as matrices) can commute with the adjacency matrix. Those will be the
counterpart of convolutions and will respect the entire graph in this abstract way. Graph signal processing
considers those objects relevant in graph neural nets. This entire approach is sometimes encapsulated by
the spectral methods.

However, there are also drawbacks to this representation. (https://distill.pub/2021/gnn-
intro/) The number of nodes in a graph can sometimes be on the order of millions, and the number of
edges per node can be highly variable. Often, this leads to very sparse adjacency matrices, which are
space-inefficient. Another problem is that many adjacency matrices can encode the same connectivity, and
there is no guarantee that these different matrices would produce the same result in a deep CNN (that is to
say, they are not permutation invariant).

11.3.2 Pooling

Pooling (downsampling) groups similar nodes and coarsens the image in CNNs. Here, the similarity usually
means how close the pixels are. In GNN, we just need a similar clustering method to “coarsen” the graph.
Under the assumption that the graph topology is fixed, we can pre-compute a specific clustering of this
graph based on its topological attribute. In this way, the four nodes in Figure 11.1 are shrunk to two nodes
in Figure 11.2.

The clustering can also be learnable. We can use some similarity measures to cluster, like similar neighbor-
hoods or similar values inside them. We can even use the learned similarity to simulate the effect of the
clustering without doing a full clustering.

https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/gnn-intro/

Lecture 11: GNN 11-5

Figure 11.2: Example of pre-computed pooling in GNN

However, the use of pooling in GNN is not as useful as in CNN. Researchers have done experiments where
they replaced well-defined pooling with random downsampling and found the network also performed very
well. The reason is that the network can learn the appropriate information in other places, like sw2

(me, them)
in Equation 11.1c. The actual activation function, fw1

, can determine certain patterns of “me” and “them”
for the next layer, meaning it will learn to cluster information together in certain places if necessary. GNN
has flexibility in the architecture itself.

11.3.3 What doesn’t change?

In fact, almost everything else remains the same. For example, the residual connection only requires the
structure of the object to be the same across layers, which GNN satisfies as well. GNN can also employ all
normalization used in CNN, like layer norm, batch norm, instance norm, group norm, and so on. All the
normalization needs are that the outputs have some sense of “likeness” to average over.

11.4 What if the graph topology is not fixed?

Let’s generalize our assumption: the graphs can still give a single output but no longer have the same
topology. What’s the most naive thing we could do?

We could try to force the graphs into a similar shape. One way of doing so is to get rid of all topology,
make all the nodes fully connected, and use edge labels to tell whether they were connected in the original
or not. However, this does not work so well, especially from a computational point of view, because lots of
graphs of interest are sparsely connected. Making the graph fully connected will result in a lot of unnecessary
computation.

So are there any other solutions? In fact, we could ignore the topology mismatch and see whether it still
works. To see whether something still works, two different parts need to be checked, whether it can still run
and whether it can give good answers if it can still run.

Will the network still run if we have lots of different graphs as our data during training?

This question can also be broken down into two questions: does it still run as pseudo-code, and does it still
run as code?

In terms of running pseudo-code, the answer is yes. Because everything is local, we are just iterating over
local neighborhoods. We just have fewer local neighborhoods or more local neighborhoods for different
graphs. The residual connections would definitely still work as long as the topology of each layer stays the

11-6 Lecture 11: GNN

same. The normalization will still be meaningful, for example, if we just divide the nodes by the different
numbers for different sizes of layers in the layer norm. It’s only when the nodes are clustered ahead of time
that the network may not be able to run. However, we seldom employ clustering because it does not make
much of a difference (as mentioned before). Therefore, we can still run it as the pseudo-code.

In terms of running the actual code, we might have to worry about the size of the arrays allocated to make
sure things fit. But the important thing is that the weights are not changed. The number of weights we
have to learn does not change even if we have more different graphs.

Food for thought: Do we need to pad the graph with null nodes?

In CNN, we need to care about the pixels on the boundaries of images because they have less neighbor
pixels. Usually we have zero padding for them or we just ignore these pixels. However, the nodes do not
have the same number of neighbors generically. We don’t have to pad the graph with null nodes because we
never have to compute anything for the null nodes.

11.5 A little intro to RNN

After learning GNN, one question that pops up is whether we could have more weight sharing. In a ConvNet
traditionally, the weights are shared within a layer but not across layers. We talked about the idea of the
neural ODE, which was the perspective of a ConvNet as a ResNet solved as a differential equation. If the
convergence of the neural ODE is wanted, we had to invoke some kind of weight sharing, at least hard or
soft weight sharing across layers to ensure the limit existence since there were similar behaviors with respect
to time. This requirement raises the question: should we share weights across layers?

We should do weight-sharing if the hierarchical structure has a self-similarity at different scales. This is one
of the key design choices in the RNN family.

• Note that the word “layer” can be used in the same way we thought about the layer from a convolution
point of view, which is what we backprop through. Once we implement weight sharing across layers,
we can still backprop through it.

Let’s give an example of an RNN now. Consider a task where you are required to identify a person’s
attributes based on their name. First, you represent the name by a sequence of characters, then represent
these characters as a graph with internal labels. As such, we associate different names with different sizes of
graphs, as shown in Figure 11.3.

Figure 11.3: Graph interpretation of name stings

One possible solution is to just use a GNN. However, when people started working on these problems, they

Lecture 11: GNN 11-7

were actually motivated by the connection with signal processing. In signal processing, you might have seen
finite impulse response (FIR) filters and infinite impulse response (IIR) filters. The difference between them
is that IIR filters have internal states, like momentum form in the momentum acceleration method. So for
the things that are sequential in nature, we can employ the analogy of an IIR filter and think of a network
that has internal states. We can treat these self-connections as a kind of internal state.

Another thing worth mentioning is that FIR filters act on the input but the IIR filter consumes the input,
one at a time, like the momentum consuming the gradient in each cycle. The whole point of an RNN is to
have this eating input behavior used in the network.

282 Scribing: Lecture 12

Jiayang Nie, Ophelia Wang

October 2022

1 Review: Skip Connections and ResNets

From the gradient perspective, residual connection blocks help address the issue of vanishing gradients. The
key to residual block is in the gradient formula: dH

dx = dF
dx + I. Thus, the baseline gradient is 1 and can

avoid gradient vanishing. The pesudo-code is in Figure 1. Through skip-connection, a deeper network yields
better accuracy unlike what happens in vanilla convNet, as shown in Figure 1.

2 Speeding Up Training

• Use larger batch size, and linearly scale learning rate to speed up the training process.

• With larger batch size and possibly insufficient memory, use distributed data-parallel training by
splitting one batch to different machines.

• To avoid over-fitting and obtain a better result in the test set, regularize by aggressive data augmen-
tation.

3 Example-Difficulty of Samples in CNN

C-score is defined as
Cp,n(x, y) = ED[P (f(x;D \ {x, y}) = y] (1)

x, y are the design matrix representing pixels and the label respectively, and D are n i.i.d. samples from some
population. We can think it as an analogy to leave-one-out validation. For example, as shown in Figure 2,
the easier for the model to correctly identify an object, the higher the C-score would be. This is also can be
thought of as consistency profile: the number of samples in the dataset with the same label that look like
this image. For instance, the Game of Throne chair has a smaller consistency in compare to a regular chair
in terms of identifying a chair. This gives us a proxy of how hard it is to identify one sample correctly.

In general, C-score increase as n increase, and C-score converge to 1 as n goes to infinity.

4 Depth-Complexity

Prediction depth is defined as the earliest layer in the model that classifies the sample correctly by KNN.
Prediction depth is a good proxy for example difficulty. In general, examples with higher C-score (easier
examples) have a small prediction depth and can be learnt in earlier epochs.

More formally, prediction depth is defined as:

argminl∈Lf(x, θl) = f(x, θ>l) (2)

1

Figure 1: ResNet Layer Review [1]

5 Dense Prediction with Convolutions: Object Localization

In sparse prediction, the task is to predict the class of an image. In contrast, the task of object localization
is to not only classify the image to a class but also detects which area of the object belonging to the class is
in the image.

5.1 Problem Setup & Measurement Metrics

Previously we have D = {xi, yi} where xi represents the image and yi represents the label. Now we have
D = {xi, yi} where xi represents the image and yi is a vector of (xi, yi, wi, hi) where (xi, yi) is the top left
corner of the bounding box of the object, wi represents the width and hi represents the height. A common
metrics for measuring performance is Intersection over Union(IoU). Assume we have a ground-truth box that
locates the object, and the model predicts another box, IoU is the ratio of the intersection area(I) over the
union area(U) of the ground-truth box and the predicted box. Usually, we declare that the model predicts
correctly if IoU ≥ 0.5 and predicted class is right. Figure 3 gives a concrete example of what IoU is: the
red area is the ground truth box, and purple area is the predicted box. IoU in this case is the area of the
intersection of red and purple boxes over the area of the union of red and purple boxes.

5.2 Naive Approach

The most straightforward approach for solving the problem is to first train the classifier with cross-entropy
loss, and then train a regression model on top of the convNets to learn the location of the box with Gaussian
log-likelihood or MSE.

5.3 Sliding Windows Approach

A better approach is to classify every patch in the image. E.g. stretching and dividing an image into multiple
sliding windows. Then then we could output the box with the highest class probability. In Figure 4, the
original image of a cat is stretched vertically and horizontally so that we can find the optimal box that
covers the cat object in this image. The key reason for stretching is to not limit the box to a fixed size
box. For instance, for this example, the middle red box from the bottom image from Figure 4 is the best

2

Figure 2: C-Score Example [1]

Figure 3: IOU Example [1]

3

Figure 4: Sliding Windows [1]

bounding box. However, if we do not stretch it, then there does not exist a bounding box that is as good as
this one in the original image. [Answer to audience’s question]: In this example of find the cat, we should
use tall and thin rectangles as the bounding boxes. Once we figured out which patch is the best patch,
we can get the corresponding the corresponding bounding box in the original image by undoing projection.
Then we can return the patch or the bounding box with the highest probability being a cat. In the case of
localization, once we have all the predictions from the bounding boxes, the next question is that which one
should we pick. In the case of localization when we know there is only one object in the image, then we
can pick the one which has the highest probability. However if we are doing multi-object localization, then
there are other algorithms such as non-maximal suppression. We basically say that we have some threshold
and look particularly at a neighborhoods and pick objects corresponding to one particular class. [Answer to
audience’s question]: We look at different scales of the image and then run sliding window over that.

5.4 A Practical Approach - OverFeat

Combining the idea of regression and sliding window together, the approach of OverFeat provides a little
“correction” to sliding window by adding small adjustments to the vector defining the bounding box. [3] We
do the sliding window trick, but instead of predicting just the class, we also predict a bunch of coordinates,
which can be think of as little corrections to the bounding box. First we can do a pre-train with the
classifier, and then train the regression head on top of classification features. By passing over different
regions at different scales, we can take an average of all the boxes as the final answer. Doing sliding window
is expensive. Hence, the more practical way is to implementing convolutional layers to recuse calculations
across windows.

Figure 5 shows an example adapted from the original paper of Overfeat. In combine of all the classification
and regression heads from the sliding windows, the model is able to find the area in the image that it is most
confident that it is a bear.

One of the downsides of using this approach is the increased computation complexity (36 windows =
36x the compute cost). To solve this, one reuse the calculations as shown in Figure 6. Fully connected
layers are size-1 filter convolutional layers in disguise. Therefore, instead of using fully connected layers
for classification task, we use convolutional layers. The benefit here is that when we scale the image, each
convolutional layer will give more than 1 output, and we can reuse each of them for other windows. Assume

4

Figure 5: Overfeat Example [3]

we were running classifier on 14 x 14 image, by upsampling the image to be 16 x 16, the output dimension
changes from 1 x 1 to 2 x 2. In this way, the computation time can be reduced to be about the same as
convNets without sliding windows.

In summary, the building block is the convolutional network that outputs class and bounding box co-
ordinates. Instead of looking at the combinatorial version of the problem, we look at different patches by
upsampling and using a sliding window technique where we can still predict the probability of the class and
the bounding box. To implement the sliding window effectively, what we do is instead of implementing the
classifier with fully connected layers, we implement it with convolutions. Implementing the sliding window
as just another convolution, with 1 by 1 convolutions for the classifier or regressor at the end to save on
computation.

6 Object Detection

Then let’s move on to object detection. Now the problem set up is slightly different. It is similar to the
localization problem, but there is a added level of complexity where before we looking at the image and we
have to predict details of one object. A more realistic setting is you want to identify all the objects in the
image. The number of objects may be different for different images.

6.1 Dense-Prediction: Generating Multiple Outputs

One solution is: instead of making prediction for one class, we make predictions for all classes and predicting
bounding boxes correspondingly. Each window can be a different object. Instead of selecting the window
with the highest probability, just output an object in each window above some threshold.

6.2 Case Study

In Figure 7, this is a case study of the algorithm YOLO [2]. This algorithm provides a different take at
the sliding window trick that we have seen in the lecture. The algorithm proposes that we only look at the
image only once. Take this image and convert this into seven by seven grids in this example. For each of
the grid, we predict what the bounding box is, what the class label is and additionally the confidence in our

5

Figure 6: Convolutional Layers

own predictions such as IoU. For class label, we can use probability as a proxy. For the bounding box, we
don’t have any proxy of the confidence of the model.

6.3 CNNs + Region Proposal Networks

There is a different class of algorithms. Originally we pre-define which part of the image we should look at.
Do we really need to do this before-hand or can my network learn to even predict where I should be looking
at. The region proposal networks achieve that. The algorithm takes in an image as an input, then extract
about 2 thousands region proposals. For each region proposal, the algorithm computes CNN features and
then classify each region. This is a smarter sliding window technique. Instead of running sliding window
on the region proposal on the input image, we first do the heavy lifting where we run the image through a
coordinate for some layers. We get some activations and then run region proposal on top of these activations.
How should we train the region of interest proposals? It’s a very similar design to what we saw before such
as OverFeat and Yolo, but now we predict if any object is present around that location. To build efficient
detectors, we can use feature pyramids. We look at the image at different resolutions. We can think of it
as am image pyramid where you have the lowest resolution version at the top and the highest resolution at
the bottom. You can try model at each of the resolution and then generate predictions from each of these
features and then pull them in some way such as looking at the max of those two to get your prediction.
The key idea is to aggregate information across multiple scales.

6.4 Compute Efficient Detection

There are other different architectures people have run automated search for finding how we should connect
these. Compared to mast RCNN and YOLO, the cost of training the Efficient Det models really pushes the
boundary.

6

Figure 7: Case Study: You Only Look Once [2]

7 Semantic Segmentation

Previously we talked about how to locate one object inside an image. Now we would like to detect all objects
in an image and label every single pixel with its object class.

7.1 Problem Setup

Assume there are K objects/classes inside an image, semantic segmentation is a K-class classification algo-
rithm, predicting a label per pixel yi ∈ {c1, c2, ..., cK}. To make it computationally efficient, we can design
a network a network architecture such as a fully convolutional network. We aim to have a set of operations
that preserve the resolution at output. However, this is constrained by the fact that effective receptive field
of convolution filters grows with depth. Only the early layers have the local view.

7.2 Conv. Operations: Down/UnSampling

Different convolutions operations can be used in the fully connected networks. There are normal convolu-
tions, which reduce resolution with stride, padding, dilated convolutions, which increase receptive-field more
rapidly, and transpose convolutions, which increase resolution with fractional stride. There are a lot of ways
to design layers. One example is the Max Pooling, which remember the max element. In Max Unpooling,
we set zeros at every other place and one only at the points which are used in the Max Pooling operations.

7.3 Bottleneck Architecture

As we get deeper in the network, we start to see a much bigger piece of the picture. Once we reach to low
resolution, we can start up-sampling and turn low resolution feature vectors into high resolution per-pixel
predictions. This is called a bottleneck architecture because we go from a high resolution and come to a low
resolution with more depth and then go back to high resolution. Down and Up-sampling can be achieved
with different kinds of convolution methods such as normal convolutions, dilated convolutions and transpose
convolutions.

7

7.4 U-Net Architecture

When we down-sampling, we lose information, which cannot be recovered by up-sampling. The intuition
behind U-Net architecture is to explicitly append filters from earlier down-sampling layer that preserve
high-frequency details, concatnating them with filters along the channel dimension.

8

References

[1] Kumar Krishna Agrawal. “Guest Lecture: Kumar Krishna Agrawal”. In: (2022). doi: https://inst.
eecs.berkeley.edu/~cs182/fa22/assets/slides/cs182lecture12vision.pdf.

[2] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In: (2015). doi:
http://arxiv.org/abs/1506.02640.

[3] Pierre Sermanet et al. “OverFeat: Integrated Recognition, Localization and Detection using Convolu-
tional Networks”. In: (2014). doi: https://arxiv.org/abs/1312.6229.

9

EE 182 Scribe notes: RNN & LSTMs, Self-supervision

Zipeng Lin, Kuba Grudzien

December 8, 2022

1 Review for last lectures

So far, we have covered convolutional networks for images and generalized versions of convolutional
network, graph neural nets.

We have the following are features for convolutional network for images.
Features of convolutional nets for images:

1. Weight-sharing across space

2. Residual Modules to support depth. Recall how we use the skip-connection to make sure the
gradient is not vanishing.

3. Pooling to more quickly support long-range dependency. Pooling can process the convolu-
tional result quickly.

Features of graph neural network (topology of image → topology of graphs) :

1. Weight-sharing across graph nodes. This is a more generalized version of CNN sharing since
instead of grids, this shares weights across graph nodes.

2. modules in each layer can reference self, global state, and neighbor. This is because of the
structure of graphs.

3. But need to aggregate symmetrically over neighbours. This is because we still need to
maintain the invariance of the model.

2 Filters

We want to understand RNNs, and it turns out we want to first recall the filters in signal processing.
They give the ideas of recurrent neural networks.

Definition 2.1 (FIR: Finite Impulse Response: generalized moving average). Moving average
is taking the average while moving across different inputs. Recall in the previous lecture that
momentum is just an exponentially weighted average.

1

An example is output y[t]

y[t] =
+k∑

i=−k

x[t− i]h[i]

where x and h are the inputs and impulse response respectively.
This is the definition of convolution (discrete). Notice that this is the same thing behind con-

volutional neural networks. Indeed, when we generalize this to 2D dimension we get convolutional
neural networks.

What if instead of having finite signals, we have infinite signals? This motivates us to look into
IIR: infinite impulse response. Before going to the definition, we first realize that we can not really
express the infinite operation by just writing them out. We want a compact way to write out
infinite operations. The key idea to do this is to use hidden states.

Example 2.2 (Infinite impulse)

Consider the recurrence relationship

y[t] = a ∗ y[t− 1] + b ∗ x[t]

we have both x[t] and y[t] are current state, while y[t − 1] is for past state. We get a
sense that IIR is strongly related to time. Recall momentum discussion in lectures: results in
exponentially weighted average.

The IIR filter has the key property that it processes the input sequentially. When there
are inputs needed to be processed sequentially, IIR can be useful.

Similarly, we can process inputs sequentially:

~yt = A ~yt−1 + B~xt

the vector version (still linear). The key idea is that the current state depends on the past
state, and it is like momentum.

Let us consider a linear example: Kalman filter. It is a way to track the system.

Example 2.3 (Learned Kalman Filter)

Textbook definition of Kalman Filter (K.F): given known dynamic for some linear system

driven by Gaussian Noise with known covariance. These dynamics have the state ~h hidden
(think about this like the intermediate weights in MLP). Instead, we observe

~xt = c~ht + ~vt

where c and ~vt are known, and ~vt is known statistics.
K.F is a linear example. Therefore, we compute the K.F Dynamics (From known dynamics

and observation structure).

~ht+1 = A~ht + B~xt

2

In a learned Kalman Filter, we do not know the dynamics. We want to learn A,B weights from
data. Also, we know A,B matrices are constant across time. We want to solve the coefficients in
recurrent relationships.

Let W = A,B and h, x be the hidden state and input. W is the unknown weight to be learned.

Assume we have traces of train data
(
~ht,j, ~xt,j

)nj

j=0
for the js being 1, 2, . . . ,m. Notice that nj is

the length.
Setup of the RNN: see the figure 1, we input x from the bottom and input initial hidden state

~o, the above are loss layer to calculate loss function and do gradient descent.

Figure 1: Simple-RNN

Now consider the inputs and outputs.
We have the inputs including the real world system, real-world states ht, real random inputs

ut to this system, and real measurements/outputs xt

We want to build a system (Kalman filters), a computation system specifically, to estimate

the ~ht. In the textbook definition of Kalman filter, we just compute the system. The output of
real-world-system is input for our computational system. The diagram from lecture below could
improve your understanding:

Figure 2: Kalman filter system

3

Figure 3: Simple RNN with input x and hidden state h

3 Recurrent neural network

Question: why do we take the loss like that? We compare our estimated value to the real value.
Question: why don’t we compute h from x? This is because we want h to be dependent on

time and want our system to reflect that. In the real world, we do not know what real data and
we want to learn the filter dynamics.

We generalize the system described above to include non-linearities. (Aside, for the linear
features, recall the neural network lectures, we can replace linear features with MLP).

In MLP, we can add expressiveness to the model by making the layers wider and the model
deeper. Now the question is how to make complicated RNN models expand expressiveness. Recall
the figure of RNN from above (figure 3). We can approach the problem from two kinds of per-
spectives: either we change the internal structure of RNN by a little bit, or like doing with other
deep learning models, we stack over layers.

3.1 Choice one: stick to the picture but make things wider/deeper

Figure 4: Option 1

4

We change two things here: the MLP and the ht. We make both wider (MLP can be deeper too)
to make it more expressive.

3.2 Choice two: Use layers of simpler RNNs

We use layers of simpler RNNs. Treat each RNN as a filter, we compose filters together.
It is the same way that convolution network gets deeper. We can put an output layer above,

and the inputs are on the ground. The gradient could flow in two directions.

Figure 5: Option 2

3.3 RNN challenges

Similar to the challenges we face while using layers of CNN, we also need to deal with dying
gradients and exploding gradients. In order to do that, we want to use a saturating non-
linearity.

Definition 3.1 (non-saturating). A function f is non-saturating if and only if either its limit at
∞ is +∞ or its limit at −∞ is +∞.

Definition 3.2 (Saturating). A function is saturating if and only if f is not saturating

Example 3.3 (ReLU is non-saturating)

The function ReLU reaches∞ when x→∞ so it is non-saturating, which is why it is not often
used in RNN. However, in the PyTorch version of RNN, you can still use ReLU to explore the
details of computing.

5

Thinking 3.4 (Why not to use non-saturating nonlinearity?)

Since RNN are recurrent, the gradient would involve a lot of multiplication. Therefore, in
order to prevent the gradient from exploding, we want to make sure the output value of the
activation function would be smaller than one, otherwise, the result would diverge if we have
too many RNN time steps.

Examples of saturating non-linearity, tanh and sigmoid.

tanh(x) =
ex − e−x

ex + e−x
∈ (−1, 1)

and

sigmoid(x) =
1

1 + e−x
∈ (0, 1)

Figure 6: Graphs of two saturating non-linearities

From another perspective, we can use Layer Normalization on the data to prevent exploding
gradient. We can apply layer normalization in two ways in the context of RNN: either we normalize
the hs above, or, we can do the layer norm in the x direction. We can also put layer norm inside
wis. The reason why we do not usually use Batch Normalization is because it would not
consider the recurrent part of the network, as in each recurrence calculation the statistics about
the data would change. If you want to explore further, you can check paper https://arxiv.org/
abs/1603.09025 and see how reparametrization to get Batch Normalization work.

On the other hand, how do we combat dying gradients? Can we use “skip connection“ like the
one in ResNet? Yes, we can, but there should be discussions about which direction we should use

6

https://arxiv.org/abs/1603.09025
https://arxiv.org/abs/1603.09025

Figure 7: Several RNN layers

As we can see, the input is from the bottom, the hidden state are from the left. We have two
options:

• Do ResNet skip connection in the vertical direction (orange lines)

• Do ResNet skip connection in the horizontal direction (red line)

We get the vertical skip connection could work, but the horizontal one might not work.
The reason is that the horizontal direction is for the hidden state, so we ignore the current input
slightly. In many applications, adding horizontal skips changes inductive bias in a bad way (since
it can not go back without knowing the ignored inputs).

In order to address the horizontal direction of the skip connection, we introduce the following
idea.

Key Idea: add a memory cell: make horizontal paths have a way for gradients to flow backward
when those gradient values make sense, but which can learn to block gradients as well.

Context is represented by the symbol ct and it should change but at a slower rate most of the
time. However, when the input changes a lot, the context should change too. Most of the time, we
want to multiply that with ft. Usually, ft is 1. However, sometimes ft is not 1, we thus multiply
the input by 1− ft and we have new context ct+1. When ft = 1, (1− ft) ∗ input has no affects on
the context. ft is the forget gate (1 being remembering). An example of ft is

ft = sigmoid(w1xt + w2h + w3ct + bias)

with w3ct sometimes being ignored. The input here would be

7

input = tanh(w1xt + w2h + w3ct + bias)

Figure 8: Flow in LSTM

The approach that follows the idea is adding memory to recurrent unit in addition to hidden
state ht.

Twist in practice (how it differs): usually, the current state needs to include the context, so we

have the hidden state at time t + 1, ~ht+1 is equal to

~ht+1 = ~o� tanh(ct+1),

� : element wise product,

~o : computed with non-linearity fromx, h, and probably c

this implies LSTM, which is in the discussion worksheet.

8

CS 282 Deep Neural Networks Fall 2022

Lecture 14: Attention/self-supervision
Lecturer: Anant Sahai Scribe: Xin Chen, Yun Yeong Choi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

14.1 Attention

We have learned that the natural architecture design of deep learning models is useful for different tasks.
For example, convolutional structure for computer vision tasks, sequential structure in RNN for language
processing, forget gates in LSTMmodels, etc. Although the architecture of RNNmodel is useful for sequential
data, it still has limitations in understanding human languages. One reason is that different human languages
behave differently (e.g. different grammar, word orders, etc.) To handle this problem, we need to design
some new architectures. First, let’s look at the problem of machine translation as an example.

14.1.1 Motivation of Attention

When humans read a sentence, we read one word at a time. Therefore, we design the RNN encoder to do
the same thing. As shown in Figure 14.1, each word is input into the encoder layers sequentially and each
layer outputs a hidden state that is used as an input to the next layer. Each layer shares the same weights.

Figure 14.1: A RNN encoder used to process sequential data.

Aside: Why do we call the hidden output a state?

In a dynamic system, we define “state” as something that summarizes all the past that is relevant to the
future. That is to say, if we know a state, we don’t need to care about its past and that state will provide
us with the information that we can use for the future. In the sentence example, the hidden state in the last
layer should summarize all the previous words.

14-1

Lecture 14: Attention/self-supervision 14-2

Up to this point, the normal RNN architecture works well. However, we want the model to translate the
sentence into another language. Thus we need a decoder network after the encoder. The decoder will also
use the sequential architecture and output the words in other languages, as shown in figure 14.2. The output
in each layer will be used as the input into next layer.

Figure 14.2: Encoder and Decoder in RNN.

Questions:

• Why can’t we just map each word in the original sentence into the translated sentence?
→ Because different language has different grammatical structures. The first word in a sentence in
language A may be the last word in language B.

• There are millions of words, do we need to have millions of output units for the last layer?
→ No. We can embed the word to appropriate high dimensional vectors.

• How do we translate output vectors to word?
→ Look for nearest neighbors of decoded vector.

• How do we propagate errors/loss?
→ 1) Just use output from decoder as a input. 2) Use local softmax for the rounding.

• How do we train the encoder and decoder?
→ Use supervised learning for decoder and self-supervision for encoder.

Note that there is a bottleneck between the encoder and decoder. We hope that this bottleneck can include
everything about the input sentence (recall “state”). That is to say, we are squeezing all the previous
information into this tiny bottleneck. This may cause a problem because there may be some details lost
that are irrelevant to figuring out the structure of the output sentence but relevant to which specific word is
in that sentence. For example, we input “My green cat is an alien”. the workd “green” is used to decorate
the “cat”. In the output sentence in another language, we need to know which word (“green”) is used to
decorate the “cat”. Then our model needs to look back into the input sentence. However, the architecture
we just built cannot look back at things at different scales.

Recall that for image segmentation, the U-Net architecture concatenates features from the earlier layers to
the upsampled features in the later layers to allow the model to look back into the encoder layers. Also,

Lecture 14: Attention/self-supervision 14-3

images have a nice matrix structure for the model to process considering that we can clearly depict what the
neighbors of pixels are. However, in the case of language, it is hard for the model to figure out the global
idea of the neighborhood since it is not well defined in the language itself. Therefore, we need to add
something to our network, that allows the model to look back at the words that are originally
embedded, and allows information to flow along the layers.

Takeaway:

We want to add something in the language model, which allows the decoder layers to look back at what
words are embedded. This is like a kind of memory where we are able to store something important in it
and retrieve it later. We call this “Attention.”

14.1.2 Attention structure: queries, keys and values

In the last section, we explained the motivation for “attention” and how it behaves similarly to “memory”
in a computer. There are two methods of storing memory. One is like an “array,” where we can store the
value at an address and retrieve it later by looking into that address. The other method is like a “hash
table,” where we have a key that corresponds to a specific value and can retrieve the value by querying the
key. Attention will use the hash table structure.

Figure 14.3: Scheme of attention. Query, Key, and Value [1].

Unlike the traditional hash table, now we can have a query vector that is not always exactly matched to keys
in the hash table. So we need to design a “pooling” layer which not only can get an appropriate forward
value, but also backpropagate gradients. Here are some ideas on how to design this hash table structure for
attention.

1. Idea[-1]: A naive idea. Scan for an exact match to the key (like how a normal hash table functions).
If found, return it.

Problem: Really bad at initialization. When we initialize the model, we set a random key, and try to
get the value with a random query. Then we are unable to get the value. Additionally, we are unable
to calculate the gradient for backpropagation since even if we change the keys and queries by a small
amount, there is still no matches, so there is no gradient.

Lecture 14: Attention/self-supervision 14-4

2. Idea[0]: Scan for the closest match of query to key in the hash table, and return the value.

Problem: Now we can retrieve a value and the gradient can reach the value. However, we still have
the problem of calculating a gradient for the query and key. Note that we are using the approximation
of query and key. This means that changing the query or the key by a small amount will result in the
same value, so the gradients will be 0 and cannot update the weights.

Whenever we make a hard decision, there’s a gradient problem. We need to soften this hard decision.

3. Idea[1]: Scan for the closest matches of query to the keys. Then return the weighted average of the
values.

Since the weights now depend on both the query and the key, we have gradients on query, key and
values. In this perspective, attention can be thought of as “queryable pooling”, because keys and query
values are also learnable parameters, but there are no learnable weights in the attention mechanism
itself. As shown in figure 14.4, the hidden states in the encoder are used as keys and values, and the
hidden state from a decoder layer is used as a query. The attention layer will output the weighted value
which is used together with the hidden state from the decoder to generate the output. This output is
then fed into the next decoder layer.

Figure 14.4: Scheme of attention in RNN layers.

Lecture 14: Attention/self-supervision 14-5

Details:
With proper similarity function, weighted average will be

Weighted Average =

n∑
i=1

Sim(query,keyi)vi (14.1)

where Sim is similarity function, query or q stands for query vector, keyi or ki means ith key vector, and
vi is a value corresponding to the ith value vector. Vectors/scalars are represented as bold/plain letters.

We have seen a similar ideas before - softmax and kernel-based methods. What should our similar-
ity function be?

Inner product qTk or radial basis function (RBF) exp(−γ∥q− k∥2) are good choices. Note that the inner
product should be normalized, otherwise if we have a long vector but low similarity, the inner product can
likely still be large.

In “attention,” we will use the normalized inner product:

ei =
qTki√

d
(14.2)

where d is the dimensions of q and k. This scales the variance to 1 for random keys and queries, but still
allows similarity to increase with O(

√
d) when key and query are aligned.

After that, we use softmax to compute the weights:

αi =
exp(ei)∑
j exp(ej)

(14.3)

Then “attention” will return
∑

i αivi upon query.

Question:

• What can act as keys, values?
→ There are different components that can act as keys and values. For example, we can use a hidden
state in the encoder as the key and another hidden state after that layer as the value. Also we can use
the outputs in the decoder as the query.

14.1.3 Embed “order” information in Attention

Sometimes, we might need to take care about order information in the keys. For example, in natural language
processing, “Prof. Sahai bites dog” and “Dog bites Prof. Sahai” makes the meaning totally different. One
possible way to encode order/position/time is using complex vectors. If we let t be the position in sentence
we want to encode, this can be differentiated from other sentence positions using complex expression.

ejωt = cosωt+ j sinωt or

cosω1t
sinω1t
cosω2t

...
sinωnt

 (14.4)

Lecture 14: Attention/self-supervision 14-6

Note that we don’t want to use the complex number in Neural Networks, so in practice, vector expression
will be used. This positional encoding is useful since not only we can express relative shift using matrix
multiplication (ejω(t+ϕ) = ejωt × ejωϕ) but also we can differentiate vectors as on the unit circle in the
complex plane. By concatenating the positional encoding to the key vector, we have both a regular key part
and a positional encoding. Now we can query one or a combination of them.

Questions:

• Why do we need periodicity of time? We don’t have that in our sentence.
→ The periodicity allows us to have an easier distinction between coarse and fine degrees of time.
Additionally, we do not want to make our activations really big, and this periodicity confines the
activations to a compact space.

• Is ω is learnable?
→ We can set it as learnable parameter. As far as we know, it has not proven beneficial to have
learnable ω. People usually fix ω.

14.2 Self-supervision

In many contexts, we lack enough labeled data for supervising learning, so we may need to turn to un-
supervised learning. There are two kinds of unsupervised learning: (1) Dimensionality reduction style
(pre-regression) (2) Clustering style (classification).

Note that in these styles of unsupervised learning, there are no gradients or loss functions. But what if
we can understand (1) and (2) in terms of loss function and gradient? That is to say, can we design these
unsupervised learning techniques in terms of loss function, and then do gradient descent to update weights,
which transforms this unsupervised learning problem into a “supervised learning”, or “self-supervision”
problem. Next lecture, we will see how we can turn the dimensionality reduction style of unsupervised
learning into two different kinds of self-supervised learning problems – one we call the “autoencode style,”
and the other we call the “masked reconstruction style.

14.3 What we wish this lecture also had to make things clearer?

1. When talking about query, key and values, please use more clear examples to explain this concepts.

2. It would be better if the professor can give examples of word embedding.

3. We wish the professor can spend more time clarifying how position/time information is included in
Attention. It would be better if the professor could present a trivial example.

4. It would be better if the professor talk more about the details of how the encoder/decoder is trained.
For example, the professor mentioned we can just train the decoder alone without the encoder but we
are not sure how. Currently it is very hand-waving.

References

[1] Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola, Dive into Deep Learn-

Lecture 14: Attention/self-supervision 14-7

ing, arXiv preprint arXiv:2106.11342 (2021).

CS 182/282A Deep Neural Networks Fall 2022

Lecture 15: Self-Supervision and Autoencoders

Oct 13, 2022
Instructor: Anant Sahai Scribes: Kiran Eiden, Lawrence Yunliang Chen

15.1 Background: Unsupervised Learning

We start by recalling the main idea of unsupervised learning: given some data {x⃗i}, discover an underlying
pattern in the data. There are two basic types of unsupervised learning, which are:

1. Dimensionality reduction (e.g. principal component analysis). This is vaguely similar to regression, and
the intent is to summarize or distill important information from the data. The algorithm we typically
use for principal component analysis involves solving for a singular value decomposition, and thus is
an eigenvalue computation-style algorithm.

2. Clustering (e.g. K-means). This is vaguely similar to classification, and the intent is to group related
data points. K-means is typically solved using Lloyd’s algorithm (Lloyd, 1982), which is an iterative
alternating minimization-style algorithm.

We provide an overview of some of the possible uses of unsupervised learning in the two subsections.

15.1.1 Utilizing Unlabeled Data

The naive approach when doing supervised learning on datasets with unlabeled data is to simply discard
the unlabeled data. Unsupervised learning allows one to take advantage of unlabeled data, and potentially
improve upon the mapping found by only utilizing the supervised learning algorithm.

For example, imagine a large, high-dimensional dataset of dimension d with a small number of labeled points
n ≪ d. A pure supervised learning algorithm could not be applied to this dataset, as it would need to learn
how to label data with d dimensions while only making use of the n labeled points. There are a couple of
ways to resolve this using unsupervised learning:

• A dimensionality reduction algorithm can be applied to the entire dataset, including the unlabeled
points. If the unsupervised learning algorithm is able to learn a mapping down to a low dimensional
space with dimension d′ ≤ n, the supervised learning algorithm could potentially be applied to the
low-dimensional representation of the dataset and successfully learn the proper labels.

• Similarly, clustering can be used to predict labels for unlabeled points in the dataset (assuming that
points in the same cluster have similar labels). If the number of labeled points post-clustering n′ ≥ d,
then the supervised learning algorithm can be applied to the new dataset with inferred labels.

For many problems in, for example, natural language processing and image processing, it is much easier to
obtain unlabeled data than labeled data. The models often require large quantities of data to train, so it is

15-1

15-2 Lecture 15: Self-Supervision and Autoencoders

important to be able to utilize unlabeled data. In the context of deep learning and deep neural networks,
this requires some extension of our unsupervised learning concepts like dimensionality reduction to work
with gradient descent or another, similar approach.

15.1.2 Exploratory Data Analysis

Another possible use of unsupervised learning is in exploratory data analysis. High-dimensional data is
difficult to understand and visualize, and sometimes one might want to use dimensionality reduction and
clustering techniques to simplify the dataset for visualization purposes. This is also done in the context of
deep learning, but will not be covered in this lecture.

15.2 Rethinking Dimensionality Reduction by PCA

Here we will only be considering principal component analysis (PCA) without removal of means. Let us
compile all of our data into a data matrix

X = [x⃗1, x⃗2, ..., x⃗n] , (15.1)

where each data point x⃗i ∈ Rd. Note that our data points are packed into X as columns rather than rows.
We want to find a k-dimensional subspace Sk so that the average of the residual

||x⃗i − PSk
x⃗i||2 (15.2)

is small, where PSk
x⃗i is the projection of vector x⃗i onto the subspace Sk. We can write this in terms of the

data matrix X and the Frobenius norm ||·||F as the minimization problem

min ||X − PSk
X||2F . (15.3)

Classically, we would solve this problem by taking the singular value decomposition (SVD) of X. This can
be written as

X = UΣV T (15.4)

=

min(d,n)∑
i=1

σiu⃗iv⃗
T
i , (15.5)

where the σi are our singular values and u⃗i and v⃗i are the rows of our unitary matrices U and V respectively.
Our solution Ŝk is then given by

Ŝk = span (u⃗1, u⃗2, ..., u⃗k) . (15.6)

We can approximate X by truncating the sum over σiu⃗iv⃗
T
i at i = k.

This also gives us a simple definition for our projection. We can calculate PŜk
x⃗i by defining a matrix

Uk = [u⃗1, u⃗2, ..., u⃗k] , (15.7)

and then taking
PŜk

x⃗i = UkU
T
k x⃗i. (15.8)

The k-dimensional representation y⃗ of x⃗i is just U
T
k x⃗i, and PŜk

x⃗i is a “reconstruction” of our original x⃗i in
d-dimensional space. The transformation from x⃗ to its reconstruction is depicted in Figure 15.1.

Lecture 15: Self-Supervision and Autoencoders 15-3

Figure 15.1: Dimensionality reduction and projection by PCA drawn as a block diagram.

We need to find a way to learn the mapping depicted in Figure 15.1 via gradient descent. This is discussed
in the next section.

Note: If we replace X with XT (i.e. if the data matrix contains row data instead of column data), we
can see that U and V will be swapped in Equation 15.4. That means that for row data, our subspace in
Equation 15.6 and matrix in Equation 15.7 would be defined by the rows of the V matrix from the SVD of
X.

15.3 Autoencoders

We want gradient descent to be able to learn the map from x⃗i to PŜk
x⃗i. Matching the definition of Uk

from PCA is not critical. There are multiple definitions of Uk that will produce the same Ŝk (consider
permuting Uk and UT

k , for example, or modifying Uk while preserving its column span). Furthermore, in the
context of deep learning, we are not necessarily interested in learning an appropriate linear subspace, but
some k-dimensional structure that might be defined by a non-linear mapping. We ultimately just need the
k-dimensional representation to be useful for the purposes of our learning problem.

For further reference on autoencoders, see Goodfellow et al. (2016). Autoencoders are covered specifically in
Chapter 14 of that book, which can be found online at https://www.deeplearningbook.org/contents/
autoencoders.html.

15.3.1 Learning Problem Setup

Consider the setup shown in Figure 15.2. We take some input x⃗ and compress it down to a length k
representation (bottleneck) called y⃗ via a linear map A. We then apply another linear map B to take it from

the k-dimensional vector y⃗ to a reconstruction ˆ⃗x.

Figure 15.2: The basic form of an autoencoder.

We can complete the description of our learning problem by defining a loss function that is the mean-squared
error of all x⃗i and ˆ⃗xi in our dataset:

L(x⃗, ˆ⃗x) = 1

n

n∑
i=1

∣∣∣∣∣∣x⃗i − ˆ⃗xi

∣∣∣∣∣∣2 (15.9)

https://www.deeplearningbook.org/contents/autoencoders.html
https://www.deeplearningbook.org/contents/autoencoders.html

15-4 Lecture 15: Self-Supervision and Autoencoders

=
1

n

n∑
i=1

||x⃗i −BAx⃗i||2 . (15.10)

This feels like a supervised learning problem. We are learning a mapping with parameters encapsulated
in A and B that minimizes the difference between our reconstruction ˆ⃗x and our input x⃗. Specifically, it
is a self-supervised learning problem, since our target is a function only of the input itself. Note that the
identity is not expressible via this mapping since we pass through a bottleneck layer with dimension k, and
the identity is a rank d linear map. The product BA can only produce a map of rank k, as A has dimensions
k×d and B is d×k. Thus we are learning an approximate reconstruction of our original data that minimizes
the error for a given botteneck size k.

Note: The Eckart-Young-Mirsky theorem (Schmidt, 1907; Eckart and Young, 1936) tells us that the min-
imization problem described by Equation 15.3 for rank(PSk

X) ≤ rank(X) always has a unique analytical
solution in terms of the SVD of X. This motivates our approach to PCA. What we are doing here is effec-
tively telling the computer that we know a solution exists and to go find our solution for us using gradient
descent. In deep learning in general we often have less certainty – we tell the computer that we hope an
answer exists to our minimization problem and that it has the representation we specified in our problem
setup. We then ask the computer to go find it.

15.3.2 Non-Linearity and Autoencoder Approach

In general, we can replace A and B with non-linear encoder and decoder neural networks. This approach
is called an autoencoder approach, since it encodes our input x⃗ in a low-dimensional representation y⃗ and
learns how to reconstruct that input. Historically, autoencoder strategies were often used to first learn
an initialization of the neural network weights, before training the network using the actual targets. This
approach to neural network training was eventually replaced by end-to-end supervision, but has regained its
footing in recent years as a pre-training approach for large models.

This pure form of autoencoder is not always an ideal way to solve a self-supervised learning problem, and
many variations on the basic structure outlined here exist. Some of these are discussed in the subsequent
section (Section 15.4).

For many practical problems, this basic form of autoencoder does not work so well because of the limited
flexibility induced by the bottleneck. In particular, with this bottleneck, getting the training to work well
for specific applications can be challenging, and in general, bigger networks will train more easily. So one
may not want the data to go through the bottleneck but instead go through something bigger (i.e., allowing
the dimension of y⃗ to be larger than that of x⃗). The issue, however, is that for a sufficiently large bottleneck
layer the identity transformation will become a solution (i.e., the model learns the trivial matrices BA = I
and the latent representation y⃗ is not useful). We will discuss methods to address this issue in Section 15.5.

15.4 Parameterizations

In the previous section, we discussed the most basic form of an autoencoder, which we denote as Parame-
terization 1:

Parameterization 1:

The neural network contains two sets of learnable weights: matrices A and B, and they are independent.

From a classical point of view, one may argue that the only thing we need to learn is the subspace, which is
the B matrix, and we do not need to learn the extra A matrix. Alternatively, one may argue that we only

Lecture 15: Self-Supervision and Autoencoders 15-5

need to learn the A matrix to compute the latent vector y and use the dimensionality reduction for other
applications, while the B matrix is just there to set up the autoencoder. In fact, there are multiple ways to
parameterize the learnable weights, which we discuss below.

15.4.1 Weight Sharing for A

We know that at optimality of Equation 15.10, A = (BTB)−1BT is the least square solution to achieve
projection. This suggests we can do weight sharing between A and B.

Parameterization 2:

The neural network parameterizes the encoder weights as A = (BTB)−1BT and only learns the weight
matrix B.

In this parameterization, the reconstructed ˆ⃗x = BAx⃗ = B(BTB)−1BT x⃗. This is a differentiable function of
the entries of B, and PyTorch can take gradients to learn B.

15.4.2 Partial Weight Sharing for A

In Parameterization 2, there is a complicated nonlinearity resulted from the matrix inverse (BTB)−1.
Alternatively, one could replace the (BTB)−1 part by a learnable k × k matrix C. We thus get another
parameterization:

Parameterization 3:

The neural network parameterizes the encoder weights as A = CBT and learns 2 weight matrices
B ∈ Rd×k and C ∈ Rk×k.

In this parameterization, the reconstructed ˆ⃗x = BAx⃗ = BCBT x⃗, and the encoder and decoder share common
weights B. As before, PyTorch can easily take gradients to learn both B and C.

15.4.3 Using the Inductive Bias of Gradient Descent

Apart from replacing (BTB)−1 with a learnable matrix C, we can also understand the inverse from another
perspective. In general, taking the inverse of a matrix corresponds to solving some system of linear equations.
From the perspective of deep learning, solving a system of linear equations is the same as minimizing a squared
loss function. Here, the matrix A = (BTB)−1BT is the solution to the following least squares problem:

Ax⃗ = argmin
y⃗

||x⃗−By⃗||2 . (15.11)

For deep learning, we can now solve A by gradient descent:

y⃗0 = 0⃗, (15.12)

y⃗t+1 = y⃗t + ηBT (x⃗−By⃗t). (15.13)

In fact, we can draw out Equation 15.13 as a block diagram, as shown in Figure 15.3. y⃗t is first multiplied
by −B, and then added to x⃗, before getting multiplied by ηBT and added to y⃗t.

Note that this block diagram looks like an recurrent neural network (RNN) block with a skip/residual
connection. The blue dotted box in Figure 15.3 encompasses some computation where y⃗t is like a hidden

15-6 Lecture 15: Self-Supervision and Autoencoders

Figure 15.3: Equation 15.13 drawn as a block diagram.

state in an RNN that goes through the cell repeatedly at each time step, with an input x⃗ also fed into the
cell. The orange dotted box encompasses some computation that learns the residual needed to add to y⃗t.

With this observation, we can identify A as an infinite sequence of these computation blocks, where each pass
through the RNN cell corresponds to a gradient step on y⃗t, and after infinite gradient steps, y⃗t converges
to the optimal solution of Equation 15.11, which is Ax⃗. In this way, we unroll the gradient descent for
learning the latent vector y⃗ as a deep neural network! Figure 15.4 depicts this deep neural network. We can
summarize this as another parameterization method as follows.

Parameterization 4:

The neural network consists of a deep encoder in the form of an RNN with internal weights composed
of B, and a linear decoder with weight B.

Figure 15.4: Autoencoder in the form of a deep RNN encoder and a linear decoder.

We note that the equivalence between (BTB)−1BT and an infinite sequence of the RNN cells is also related
to the fact that a matrix inverse can be expressed as an infinite series. In practice, neural networks cannot
be infinitely deep, so we just truncate it by setting a fixed depth (e.g., 10 layers).

We also note that Parameterization 4 is just a variant of Parameterization 2. In fact, we can create
other variants. For example, the RNN cell in Figure 15.4 does not need to look like Figure 15.3 — the
weights B and BT in Figure 15.3 can be some other learnable weights.

Comments: Dimensionality of y⃗ and motivation for data augmentation

• If dim(y⃗) = k < dim(x⃗) = d, none of Parameterizations 1-4 will learn the identity transformation

Lecture 15: Self-Supervision and Autoencoders 15-7

if the model is linear. But if x⃗ has a low intrinsic dimension d′ < k < d, it is possible for y⃗ to learn
to contain enough information to fully recover x⃗, especially if there are bias terms or nonlinear layers.
And that may be what we want, as y⃗ learns to capture the intrinsic dimension of x⃗.

• However, there are still some potential issues with the basic autoencoder approach (Parameterizations
1-3) of minimizing Equation 15.10. This is because there may be many choices for what y⃗ can be. In
particular, y⃗ may contain all the information necessary to reconstruct x⃗, but it may also contain some
other spurious information. And while the model may reconstruct x⃗ on the training data well, it may
spuriously rely on the noises in y⃗ so that the reconstructions become incorrect and actually amplify
the noise if x⃗ is noisy.

• In contrast, for Parameterization 4, usually B will learn to have some large singular values and
some small singular values. Because of the implicit regularization effect of gradient descent, with early
stopping, the latent vector y⃗ will adapt to move in the direction of large singular directions and not
move much in the direction corresponding to small singular values. This has the interpretation that
y⃗ does not move far in the badly-conditioned directions (since the network is not infinitely deep). In
other words, it is more robust to noise. On the other hand, Parameterizations 1-3 do not have such
inductive biases built into the architecture.

• This motivates the approach of further introducing inductive biases through data augmentation,
which we will discuss in the next section. In particular, data augmentation can encourage the model
to learn y⃗ to preserve and strengthen the true signal in x⃗ and ignore (and ideally remove) false sig-
nals/noises in x⃗.

• If dim(y⃗) = k ≥ dim(x⃗) = d, the 4 parameterization approaches need to be adjusted slightly:

– Parameterization 1: No change needed. We still have A ∈ Rk×d and B ∈ Rd×k.
– Parameterization 2: The minimum norm solution to Equation 15.10 is now A = BT (BBT)−1.
So now BA = BBT (BBT)−1 = I!

– Parameterization 3: Similar to before, we can replace the (BBT)−1 part by a learnable d× d
matrix C. So now A = BTC, and BA = BBTC.

– Parameterization 4: No change needed. We still solve Equation 15.11, and while the optimal
solution changes to A = BT (BBT)−1 when B becomes a wide matrix, the gradient descent formula
Equation 15.13 does not change! Thus, the RNN remains the same, and this parameterization
does not care whether B is tall or wide.

⋆ In this case, we see that Parameterization 2 will always learn the identity transform, while
Parameterizations 1 and 3 may learn an identity transform (e.g., if it learns C = (BBT)−1).
Parameterization 4, however, will likely not learn the identity transform because of early stop-
ping of the gradient descent (recall that the neural network is not infinitely deep). This is another
attractive advantage of Parameterization 4 over the others.

15.5 “Excorcising” the Fear of Learning the Identity

As noted in the previous comment, when dim(y⃗) = k ≥ dim(x⃗) = d, it is possible for the network to learn
the identity transformation. One way to deal with this is data augmentation, where we change the input to
be different from the target. With this change, the identity transform is no longer the optimal solution, and
the hope is that the network will not learn the identity transform (except for Parameterization 2, which
has no choice but to learn the identity).

15-8 Lecture 15: Self-Supervision and Autoencoders

15.5.1 Use Data Augmentation: Denoising Autoencoder

Recall data augmentation in computer vision, where we modify the images (e.g. rotate, crop, brighten) but
keep the target labels the same. Here, the data augmentation we do is adding noise. We keep the target x⃗

the same but change the input to be x⃗+ n⃗, where n⃗
iid∼ N(0, σ2).

Note that for the bottleneck architecture (k < d), the correct solution (Equation 15.6) has the property of
averaging out noise. This is because the noise of the input, which is d-dimensional, has about dσ2 energy.
After projecting down to a k-dimensional subspace, the total energy of the noise is about kσ2. This means
that, the output ˆ⃗x only has about kσ2 noise. Therefore, this denoising data augmentation creates an inductive
bias to encourage the model to get rid of noise or average it out.

Also, as pointed out in the previous comments, for the k ≥ d case, Parameterization 4 can achieve
successful denoising with a deep (but not infinitely deep) neural network by learning a matrix B that has
large and small singular values (so y⃗ learns to move in the well-conditioned direction and ignore the noises).

15.5.2 Masking/Inpainting: Kind of Data Augmentation

Another approach of data augmentation is masking/inpainting. Instead of adding noise, we remove entries
from the input. For example, given a data point x⃗ = [x1, x2, x3, x4, x5]

T , we mask the input and feed into the
neural network [x1, ?, x3, x4, ?]

T , and ask the network to reconstruct x⃗. Again, the identity transformation
is no longer the optimum. But suppose the underlying structure of x⃗ is 1-dimensional, it is possible for the
model to learn to predict x2 and x5 from the other entries.

As we see, learning a low-dimensional subspace allows us to do many tasks, including denoising, straight
autoencoding, as well as filling the blanks. Because the underlying structure supports many tasks, we can
do any of these tasks for self-supervision, and it is useful to do so.

In practice, we need to think about how to implement masking. The simplest choice of putting in 0’s does
not work, as 0 is not a mask and will want to be reconstructed as 0. We will talk about this in the next
lecture, and we will see that the architecture shown in Figure 15.4 is more suitable for masking than that in
Figure 15.2.

15.6 What we wish this lecture also had to make things clearer?

1. In lecture, we used Figure 15.1 to describe PCA in terms of a linear map Uk derived from SVD. We
then discussed how we might want to add some non-linearity (and indeed, how that is much of the point
of moving to deep learning). However, when we went to describe the autoencoder, our autoencoder
structure was effectively the same as Figure 15.1 and still utilized linear maps. We just replaced Uk

and UT
k with the matrices A and B with learnable parameters. It might make more sense to describe

the autoencoder structure in terms of arbitrary non-linear maps A and B with learnable parameters,
and then make any arguments we need to make about the learning problem (e.g. whether we can learn
the identity) in terms of general non-linear maps. Alternatively, it might make more sense to discuss
how we want to generalize to non-linear maps after writing down the basic autoencoder structure in
terms of linear maps rather than before.

2. It would be clearer to summarize the contrast of the 4 parameterizations in each of the settings
individually (k < d and k ≥ d and with and without data augmentation) instead of talking about
them at the end when multiple tweaks have been introduced. For example, currently, the k ≥ d case
is discussed together with the denoising autoencoder, and when talking about the denoising effect of

Lecture 15: Self-Supervision and Autoencoders 15-9

Parameterization 4, it is not immediately clear which component is the main contributing factor,
i.e., whether it comes from k < d or the early stopping of gradient descent or the denoising data
augmentation task. Similar for the disadvantages of the other parameterizations: under precisely what
settings do they work or not work.

3. Some demos or plots showing different behaviors when the latent dimension (k) is smaller/larger
compared to the input dimension (d) will be really helpful for interpreting the expected results.

References

Eckart, C. and Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika,
1:211–218.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.

deeplearningbook.org.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129–
137.

Schmidt, E. (1907). Zur theorie der linearen und nichtlinearen integralgleichungen. Mathematische Annalen,
63:433–476.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

CS 182/282A Deep Neural Networks Fall 2022

Lecture 16: Self-Supervision and Autoencoders (cont.)

Oct 18, 2022
Instructor: Anant Sahai Scribes: Xingyi Yang, Sayan Seal

16.1 Autoencoder Style Training

In Lecture 15, we learnt the structure of Autoencoder, which involves an Encoder, a Decoder, and a re-
construction loss for the training of parameters. Given a dataset of unlabeled data {x⃗i}, we can train the

Autoencoder, so that the Encoder transforms the input x⃗i into a new latent representation, denoted as l⃗i,
and the Decoder reconstructs the input x⃗i from the transformed representation l⃗i. Then, the question is,
how does an Autoencoder help practical machine learning tasks? When do we need an Autoencoder and
how do we use it?

The key task is performed on the Encoder side. By training an Autoencoder, we get an Encoder which can
transform a data point x⃗i into a transformed representation l⃗i. Since we can recover much information of
x⃗i from l⃗i through the Decoder, and l⃗i often is lower-dimensional, we assume that l⃗i keeps the essence of x⃗i,
while dropping some noisy information. The goal here is to learn some underlying pattern implicitly such
that this will be helpful for other downstream tasks. The basic structure of an Autoencoder is shown in
Figure 16.1. The part in the dotted box is important as it performs some encoding to appropriately distill
the pattern. The remaining part serves as a surrogate task, which helps in the passage of gradients during
training, but is trivial compared to the Encoder. In self-supervision, conceptually we create a surrogate task,
where the target is a function of the input.

Figure 16.1: The basic form of an Autoencoder. We focus on the Encoder part in the following process.

Consider we are given a task with a set of labeled data {(xi, yi)}, and we are going to train a supervised model
which provides a mapping from x⃗i to yi. Normally, we train a deep neural network which maps input x⃗i to
output ŷi directly, and minimize the divergence between ŷi and the ground-truth label yi, as shown in Figure
16.2. However, if we are interested in classification, we do not optimize on the probability of misclassification,
but on other forms of loss (surrogate loss) like squared error, one-hot encoding, cross-entropy loss or hinge
loss. This pattern works for many tasks, but it may fail sometimes. The neural network may not train well
if there are too little labeled data to support the training of a complex deep neural network of x⃗ → y.

Then comes the idea of using Autoencoder. Now that l⃗i provides a conciser representation of x⃗i itself, while

16-1

16-2 Lecture 16: Self-Supervision and Autoencoders (cont.)

Figure 16.2: The common pattern for learning a supervised task using neural network.

keeping the most essential information, we can freeze the Encoder and learn a neural network which maps
l⃗i to yi, instead of x⃗i. This way, the Encoder provides a refined representation of data, from which we can
train a simpler neural network using gradient descent with less parameters. In this process, the Encoder
takes a part of the representing work of neural networks, so that it is easier to train a neural network on top
of it. The big picture of this idea in shown in Figure 16.3. Alternatively, the entire network can be learned
in an end-to-end manner, with necessary fine-tuning of the encoder.

Figure 16.3: The big picture of using an Autoencoder to help a supervised task.

A big advantage of using Autoencoder is that we can use a larger set of unlabeled data for training of
Autoencoder and leverage the knowledge for downstream tasks which come with a small set of labeled data.
More specifically, consider a downstream task of mapping x⃗i to yi, where there is a dataset D = {(xi, yi)}
of n pieces of data. And there is another unlabeled dataset Du = {xi} of size N , where N ≫ n. For the
Autoencoder, we can use both D and Du to train a better Encoder, because Autoencoder is an unsupervised
model. This serves as a surrogate task. Then, for the downstream task, though we cannot use the dataset
Du directly, we manage to leverage the knowledge behind Du by using the encoded representation l⃗i of
Autoencoder. Figure 16.4 demonstrates this intuition.

This concept is very close to pre-trained models. However, the key difference between this type of approach
and pre-trained models is that, here the surrogate task is not particularly interesting, but is designed to just
learn the underlying pattern. In the case of pre-trained models, both the pre-training task to learn some
pattern, and the actual task, which uses these patterns, are interesting. For example, pre-training a classifier
on ImageNet, and then replacing the final classification layers to train on a smaller different dataset, such
as classification of cancerous and non-cancerous tissues, are both interesting tasks.

16.2 Different Autoencoders based on Surrogate Tasks

There are multiple choices of surrogate tasks when we try to learn an Autoencoder. In terms of pre-process
of input, there are three common tasks available: vanilla autoencoding, denoising autoencoding, and masked

Lecture 16: Self-Supervision and Autoencoders (cont.) 16-3

Figure 16.4: The demonstration of how an Autoencoder can help the downstream task by leveraging more training
data in a self-supervised manner.

autoencoding. In the following parts, we denote E(·) as the Encoder function and D(·) as the Decoder

function. The surrogate objective is denoted as L(x⃗, ˆ⃗x). The surrogate objective L is typically L2 distance

between x⃗ and ˆ⃗x.

16.2.1 Vanilla Autoencoder

The most basic idea is to directly use x⃗i as the input, and expect the Autoencoder to reconstruct the input
x⃗i after decoding. Specifically, it minimizes L(x⃗i, D(E(x⃗i)) directly.

It is the most naive approach to train an Autoencoder.

16.2.2 Denoising Autoencoder

We can also add some noise to the input x⃗i to train the model ability of denoising. That is, given an input

vector x⃗i, we add noise n⃗ to input x⃗i and give x⃗i + n⃗ as input to the Encoder, where n⃗
iid∼ N(0, σ2). The

surrogate target of the Decoder is still x⃗i. Specifically, it minimizes L(x⃗i, D(E(x⃗i + n⃗)). Then, to minimize
the surrogate objective, the Autoencoder has to specify and diminish the noise part in x⃗i+ n⃗ when encoding.
Thus the learnt Encoder is more robust to noise on the input. We can consider this approach as a kind
of data augmentation. That is, by adding the noise term, more training data are generated to train the
model. Moreover, this approach does not suffer from the problem of learning the identity mapping, while
the Vanilla Autoencoder does. This is because, in this case, the input is different from the target, and the
identity mapping is not the optimal solution.

16.2.3 Masked Autoencoder

Another approach of data augmentation is to mask some parts of each input vector x⃗. For example, given
an input x⃗ = [x1, x2, x3, x4, x5]

T , we may randomly drop some of them, say, let the input to the Encoder be
x⃗′ = [x1, ?, x3, x4, ?]

T . Specifically, it minimizes L(x⃗, D(E(x⃗′)). The surrogate target of the Decoder is still
x⃗. Then, to minimize the surrogate objective, the Autoencoder has to recover the missing information of
the masked input x⃗′ according to the other parts. This approach can also be thought of as another kind of
data augmentation, with the special symbol ?, but dealing with this symbol is a non-trivial task.

16-4 Lecture 16: Self-Supervision and Autoencoders (cont.)

As there are several parameterization approaches introduced in Lecture 15, masked Autoencoder works
differently with these approaches, as shown below.

1. The first parameterization approach is given by Equation 16.1

E(x⃗) = Ax⃗ =

m∑
i=1

x[i]⃗ai,

D(⃗l) = Bl⃗,

(16.1)

where the dimension of x⃗ is m and A = [⃗a1 a⃗2 · · · a⃗m]. The architecture for this is shown in Figure
16.5. It involves two parameter matrices, A and B. For this approach, we simply change the masked
part of x⃗ into value 0. This approach is like adding a dropout layer before the Encoder layer. So, just
like dropout layer, we need to compensate for the loss of size of l⃗ when we drop some inputs. That is,
if we randomly drop inputs by probability 1− p, we need to multiply the transformation matrix A by
1
p . The limitation to this approach is that we always use the same transformation matrix A and B,
whatever part we mask. However, we may want the model to have different parameters when different
part of the input is masked, because intuitively we may want to use different strategies to recover the
information of the input when we know which part of the input is missing.

Figure 16.5: The demonstration of the first parameterization.

2. The second parameterization (Figure 16.6) fixes the limitation. It parameterizes the encoder as Equa-
tion 16.2

E(x⃗) =

(BTB)−1BT x⃗, if dim(l) < dim(x)

(reduction of parameters using least squares)

BT (BBT)−1x⃗, otherwise,

(reduction of parameters using min norm)

(16.2)

where B = [⃗b1
T b⃗2

T · · · b⃗mT]T and BT = [⃗b1 b⃗2 · · · b⃗m], and D(⃗l) = Bl⃗. The second case of Equation 16.2
yields Equation 16.3

D(E(x⃗)) = BBT (BBT)−1 = I, (16.3)

which is not desirable, and hence this case is not used. This parameterization involves one parameter
matrix, B. When masking the input for it, we drop the corresponding rows of B because these parts
are not used by the input. Specifically, if there is an input vector x⃗ = [x1, x2, x3, x4, x5] and we mask
it as x⃗′ = [x1, 0, x3, x4, 0], then we can remove the second and the last rows in B and get B̃. And then
we have Equation 16.4.

E(x⃗) = (B̃T B̃)−1BT x⃗. (16.4)

The advantage of this approach is that when different part of x⃗ is masked, the model changes accord-
ingly, because B̃ is changed accordingly. For each possibility of masking, the resulting parameter B̃
is different, which intuitively provides different strategies for recovering information from the masked
input. Also, in the decoder, D(⃗l) = Bl⃗, where l⃗ is being learned, and we have an actual target x⃗. So,
we get gradients during reconstruction, and not from the encoder, to set the rows of B which were
previously dropped.

Lecture 16: Self-Supervision and Autoencoders (cont.) 16-5

Figure 16.6: The demonstration of the second parameterization.

3. The third parameterization approach considers the encoder as an RNN style network with weight
sharing (Figure 16.7). The gradient descent step is given by Equation 16.5.

l⃗0 = 0⃗,

l⃗t+1 = l⃗t + ηBT (x⃗−Bl⃗t).
(16.5)

Running this block for d steps signifies gradient descent with early stopping, which can learn something
meaningful. This is because, if B is such that most of its singular values are in the direction of the
underlying pattern, and the other singular values are small, taking a few steps of gradient descent
along that direction will project onto the pattern, with very little energy going in other directions.
This is effectively denoising despite projecting onto a larger space. Hence, it is expected that deeper
architectures for Autoencoders can learn interesting inductive biases.

In this approach, we first compute x⃗ − Bl⃗t. But some of the inputs are masked, and hence we need
to first figure out what ? − ∗ means (∗ denotes some real number or vector). Two natural choices
for this are either to use ? or 0, which give the same final result. This is because, in the next step,
when we multiply ηBT to x⃗ − Bl⃗t, the multiplication of some quantity with 0 will yield 0, as will
the multiplication with ? following the strategy used in the second parameterization. Hence ? − ∗ is
clamped as 0, which makes the residual 0. Treating ? directly as 0 is not a valid choice as ? − ∗ will
then be −∗, denoting a residual. In this case, the model will try to update the parameters to get rid
of the residual, which does not make sense since nothing should be present at the masked locations to
drive the update at the encoder. Decoder is designed to deal with this issue, while the main task of
the encoder is to find a good latent representation.

Figure 16.7: The demonstration of the parameterization of RNN style network with weight sharing.

The issue with the parameterizations discussed above is that the rows of the matrices corresponding to the
masked entries in the encoder will have no update.

For each input, some probability metric is used to determine the position of the masks. The final goal
here is to learn the underlying pattern, so that the model can learn to complete things. However, due to
this masking, some of the important features may not get recovered, if those masked features cannot be
extracted from the other unmasked features. We can expect that the different masks help in learning the
implicit patterns on average.

Binary flags, instead of ?, can also be passed to the network to denote masking. The implementation depends
on whether we want the model to learn how to use the binary flag or do some pre-processing with the flag.

16-6 Lecture 16: Self-Supervision and Autoencoders (cont.)

Masked autoencoders can be seen as another way of learning low dimensional structure, apart from denoising
autoencoders. The models tend to generalize well. For example, the task of adding noise in language models
is difficult, and hence masking can be used. Even though blanks can be in a critical position, the model can
learn something about the pattern so that some unlikely predictions can be discarded.

Even though with low dimensional latent space, there is no fear of learning the identity mapping, sometimes
we want to have the freedom of learning larger l. In deep learning, we have seen many times that if we
allow more parameters in the model, we tend to have better training, and achieve better performance. If
l is big, for parameterization one, we have more rows of A with more parameters for initialization, and
hence more room for a lucky guess to get a good row of A. Moreover, it is possible to have a low dimensional
structure embedded in a high dimensional space that is still being purified in some way. The pure invertibility
perspective of a matrix is not that useful since in matrix inversion, no information is lost. But the singular
value perspective of a matrix helps to see the purification process in some way. It does not allow everything
to go in the same way, but might shrink things in some direction and expand things in other directions.

16.3 Aside: Beam Search

A language model is a sequential model with access to some kind of memory. For RNN or LSTM, memory
of the past is constrained to be the state, but attention mechanism is also used for language models. The
general picture of a language model is shown in Figure 16.8.

Figure 16.8: General Picture of a Language Model.

An example of self-supervised training of a language model is shown in Figure 16.9.

Words (represented using some vector embedding) can be considered as a discrete set of objects, and hence
this self-supervision task is kind of a generalized classification problem. The output of the model at each
step is not a single object, but a set of learned scores or probabilities corresponding to the different words.
Self-supervised training over millions of sentences can make a model learn to put high scores on words that
appear frequently, and lower the scores of words that do not appear. For example, if we have a sentence
“The man ate the ”, the probability of the next word being carrot should be much more compared to the
word of.

Lecture 16: Self-Supervision and Autoencoders (cont.) 16-7

Figure 16.9: Self-supervised training of a Language Model where at each step, the model is predicting the next word
conditioned on the previous words.

We can use the trained model on some task, for example, to generate a sentence. Filling in just one blank
using the model is not a difficult task, as the model has already been trained on that. So, we can take the
word corresponding to the highest output probability, or use random sampling. For the sentence “The man
ate the ”, if we want a single output, we can just get the output corresponding to the highest probability
(suppose carrot in this case). But for a variable length output, different outcomes such as “The man ate
the banana.”, and “The man ate the banana with the fork.” are possible. This task of completing a sentence
is challenging. Exhaustively searching the tree of all O(MT) possible sequences, where M is the size of the
vocabulary, and T is the maximum length of a sequence, to determine the true most likely sequence can be
intractable.

The naive strategy is to pick the highest probability for the next word in a greedy manner, then add the
word to the resulting sequence, and repeat the process using the updated sequence. But this may lead to
a dead end, such as loops. Backtracking approach is not commonly used for language models, since it is
difficult to interpret which situation is bad, so that the model can return to the last stable state. The data is
always collected from a dataset containing good examples (i.e., from the pattern), and the model learns on
that dataset. We do not have data that does not come from the pattern, or comes from almost the pattern.

Hence, a better strategy is not to commit to one particular thing, but instead keep a bag of current best
possibilities in order to generate the most likely next sequence based on high likelihood. This is the main
idea behind Beam Search. At each step, keep k best-so-far continuations based on the output probabilities.
For each of the k continuations, predict the next output, which will generate k2 possibilities, pick the k best
ones, and repeat the process. The pseudocode of this strategy (taken from question 5 of hw6) is given in
Algorithm 1:

Algorithm 1 Beam Search

for each time step t do
for each hypothesis y1:t−1,i that are being tracked do

find the top k tokens yt,i,1, · · · , yt,i,k
end for
sort the resulting k2 length t sequences based on the total log-probability
store the top k sequences
advance each hypothesis to time step t + 1

end for

A simple visualization of this strategy as a tree search problem is shown in Figure 16.10, where k = 2. The
leftmost node can be considered as the START token, or one of the results so far. At each next step, based
on the probabilities, 2 (red nodes) out of the 4 most probable nodes (red and blue nodes) are chosen for the

16-8 Lecture 16: Self-Supervision and Autoencoders (cont.)

most likely paths. For a more concrete example, please refer to question 5 of hw6.

Figure 16.10: Simple visualization of the Beam Search strategy as a tree search problem (k = 2).

However, multiplication of the probabilities along the predicted sequence might create biases towards very
short sentences. If appropriate normalization is used to tackle the issue, biases might be created for very
long sentences. There are numerous tricks involved to get this strategy working properly.

16.4 What we wish this lecture also had to make things clearer?

1. It was briefly mentioned in the lecture that in the context of language models, adding noise is a difficult
task, for which masking is used. Even though we believe that the topic will be covered in more details
in the subsequent lectures, it would have been really helpful if some specific examples of such models
using masking techniques were provided.

2. For all the parameterizations, the bottleneck case where dim(l) < dim(x) does not have the issue of
learning the trivial identity map. This issue might arise if dim(l) ≥ dim(x), and under this condition,
learning the identity map is always the case for parameterization 2. However, it was mentioned in
the lecture that sometimes, having larger latent space can be beneficial for learning better models (for
the other parameterization cases). The manner in which the different relative latent space dimensions
may be useful (or harmful), can be summarized for clear understanding. Also, in the case where
dim(l) ≥ dim(x), the importance of dense and sparse representations can be mentioned to provide a
complete picture. More figures might be included for explaining the different autoencoder ideas.

3. The overview of Beam Search was briefly covered in the lecture. But, some of the important concepts
such as stopping criterion, or normalization techniques to deal with different lengths of the sequences,
or multiplication of probabilities along the sequence were not covered. It would have been helpful to
get some information on these concepts, along with a concrete example.

EECS 182/282A Lecture 17: Transformer Models

Instructor: Anant Sahai
Scribe: Chengyuan Li, Jackson Gao

November 13, 2022

1 Introduction

We have spent a lot of time understanding the idea of self-supervision where we only have access to
unlabeled data (just like in unsupervised learning) and use data themselves to generate labels. One
example that proved such learning scheme useful is doing PCA-style dimensionality reduction
“purification” in an autoencoder style with self-supervision. Apart from PCA, k-means style
clustering where we assign unlabeled data to groups is another kind of traditional unsupervised
learning. In the first part of the lecture, we attempt to make k-means clustering compatible with
gradient descent. Then, we will connect to the idea of attention and introduce transformer models.

2 Classic Lloyd’s Algorithm for k-means

Given inputs {x⃗i}, the following algorithm outputs cluster centers {r⃗j} such that x⃗i belongs to cluster
j described by its center r⃗j :

1. Initialize k cluster centers r⃗1, r⃗2, . . . , r⃗k (e.g. randomly pick k input points)

2. Assign each data point x⃗i to a cluster j based on the closest r⃗j

3. Update r⃗j to be the mean of cluster j

4. Repeat steps 2 & 3 until converged

When the algorithm sees a new point, it assigns the point to cluster j based on the closest r⃗j . This is
important because we want to use what we have learned on new data. Now we attempt to make the
algorithm “trainable” with gradient descent.

2.1 SGD Approach (First Attempt)

Suppose we have initialized the cluster centers, we want to use our data points one by one to move
the centers to be in a good place. This is different from the Lloyd’s Algorithm in which we need to go
through all data points in each update step.

1. Pick a point x⃗i (viewed as a mini-batch)

2. Find r⃗ = argminr⃗j ||x⃗i − r⃗j ||

3. Minimize ||x⃗i − r⃗||2 over r⃗ by taking a gradient step: r⃗ = r⃗ + η · 2(x⃗i − r⃗)

4. Repeat steps 1 & 2 & 3 until converged

We can consider step 3 as an analog of step 3 in Lloyd’s algorithm since setting r⃗j to be the mean of
cluster j essentially minimizes the squared error between r⃗j and points in cluster j. However, step 2 is
problematic because argmin is not differentiable. We want to replace argmin with an operation that
is differentiable.

1

2.2 Softmax Idea

We first investigate the behavior of the following quantity:

e−γ||x⃗i−r⃗j ||2 . (1)

Observe that when γ > 0, (1) is close to 0 if r⃗j is far from x⃗i and is close to 1 if r⃗j is close to x⃗i.
By scaling this quantity to be between 0 and 1, we can then apply normalization to turn them into
probabilities and take expectations of interest.

Let αj = e−γ||x⃗i−r⃗j ||
2∑

l e
−γ||x⃗i−r⃗l||2

, we can view αj as the amount we want x⃗i to pull r⃗j . If x⃗i is far from r⃗j , αj

is close to 0, and we do not want x⃗i to pull r⃗j . If x⃗i is close to r⃗j , αj is close to 1, and we want x⃗i

to pull r⃗j . Therefore, minimizing the following quantity by taking gradient descent steps achieves our
goal of getting r⃗j updated: ∑

j

αj ||x⃗i − r⃗j ||2. (2)

Now we have everything ready for using gradient descent on k-means. Let’s understand it by drawing
the computational graph:

Figure 1: Computational graph (k-means with softmax idea)

Starting from the left, we first take the difference between input x⃗ and network parameters r⃗1, r⃗2, . . . , r⃗k,
then take the squared norm of the differences and feed them into the softmax operator (with hyper-
parameter γ), which outputs α for the computation of our objective function (2). From there, we use
gradient descent to backprop. (Note: In deep learning, the hyperparameter γ is traditionally referred
to as “temperature” due to its analogy to statistical mechanics.)

Let’s compare the softmax idea with our first attempt of using SGD. In our first attempt, we pick a
point x⃗i and use it to update the closest r⃗j in each iteration, and the amount we move r⃗j is based on
the learning rate η and the distance between x⃗i and r⃗j . In the softmax idea, we do similar things in
a batch, updating all r⃗j at once, but we control how much each r⃗j is updated by αj (i.e. the softmax
version of the distance between x⃗i and r⃗j). Using the softmax idea, we successfully eliminated the
problem we had in SGD while accomplishing our goal.

2.3 Goofy Alternative

Suppose we have the ideal case where clusters are widely separated as shown in Figure 2. r⃗1, r⃗2, r⃗3
represent the center of each cluster. Let’s consider a point x⃗i (circled, in the upper right cluster).
With the softmax idea (1) where γ is relatively large, we have α1, α3 close to 0, and α2 close to 1.
This motivates us to think about an alternative approach for gradient descent.

2

Figure 2: Motivation of goofy alternative

Instead of optimizing (2), we treat αj as the probability that x⃗i is the closest to r⃗j and compute the

expectation ⃗̂r =
∑

αj r⃗j of where the closest cluster center is (to x⃗i). We then minimize the distance

||⃗̂r − x⃗i||2 by gradient descent, which looks more like the standard gradient descent objective.

The goofy approach is interesting due to its connection with the attention mechanism. In attention,
we have k⃗ (key), q⃗ (query), and v⃗ (value). We take the average of the values based on similarities to

the keys that have gone through appropriate softmax. Here in ⃗̂r =
∑

αj r⃗j , we can treat r⃗j as the

value v⃗ and αj as the key k⃗ that have gone through softmax.

Again, let’s understand it by drawing out the computational graph:

Figure 3: Computational graph (k-means with goofy alternative)

Comparing with the previous computational graph, we see that the only difference is the objective
function to optimize at the end. Instead of directly optimize (2), we first compute the expectation ⃗̂r,

then optimize the distance ||⃗̂r − x⃗||2.

3 Transformer Models

Transformer models are first introduced in the paper Attention is all you need [1]. We will introduce
two key ideas of transformers.

3

3.1 Key Idea 1

In the previous lecture, we talked about RNN which uses states to memorize knowledge. Attention
mechanism can also be viewed as a kind of memory, which is a soft approximate hash table. Here we
try to only use attention to “write things down” instead of using states as internal memory. Now, what
we can do is to write memory and query memory. Then it comes to the first key idea of transformers:
“I don’t need internal memory if I can write notes to myself”. What happens is we drop recurrence
from the RNN approach, but keep weight sharing (across time).

Based on that, we can intuitively consider transformer models as GNN, which share weights between
different nodes. Nodes in transformer models that pass across time can also be viewed as a fully
connected graph. These basic ideas are similar.

This idea relies on the attention mechanism. We have introduced two ways of understanding attention:

1. Soft approximate hash table

2. Queryable softmax pooling

In the field of computer science, we can consider attention as a hash table; but in deep learning style,
it is a pooling layer combined with softmax.

3.1.1 Recall attention

From the previous lecture, we have three vectors in attention: k⃗, q⃗, v⃗, and we have a hash table
containing pairs of k⃗i and v⃗i.

Figure 4: Attention hash table

When we apply a query q⃗t, we can calculate the output as follows:

ei,t =
< q⃗t, k⃗i >√

d
(3)

αi,t =
eei,t∑
j e

ej,t
(4)

output =
∑
i

αi,tv⃗i (5)

In equation (3), d represents the dimension of the key. This process is what we called queryable softmax
pooling, and equation (4) is doing softmax. Besides, if the process generating q is also populating the
table with k, v, we call it self-attention. Basically, if you are writing to the hash table at the same
time, it is self-attention; otherwise, if you only read the value from others, it is not. Just as Figure 5
shows, if xi+1’s key also query its own key, then it is self-attention.

Aside: The product of q⃗t and k⃗i can be negative or positive, which represents the direction of the
resulting vector. In transformer models, the negative value means they are quite different, but in other
models it may have different meanings.

4

Figure 5: Self-attention

3.2 Key Idea 2

It is useful and important to use multiple channels in conv-nets, and we also want to use multiple
channels in transformer models. We call it multi-headed attention in transformer models, and it has
many parallel queryable softmax pooling.

If we think about max pooling in conv-nets, different channels may select different features. Now,
when we generate different queries, it may comes up with different values.

Note: This lecture ended early as the scheduled fire alarm drill occurred.

References

[1] Ashish Vaswani et al. “Attention Is All You Need”. In: (2017). doi: 10.48550/ARXIV.1706.03762.
url: https://arxiv.org/abs/1706.03762.

5

https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762

EECS 182/282A Deep Neural Networks Lecture 18 - 10/25/2022

Lecture 18: Transformers
Instructor: Anant Sahai Scribe: Jianzhi Wang, Jason Yang

1 Recap

1.1 Differences between RNN and Transformer

In both approaches, we have sequential inputs. In the RNN approach, we try to capture all the information
from one state (the context token). In the transformer approach, we use the attention mechanism to learn
the dependencies across the input sequence. This is because the attention mechanism allows us to query to
multiple positions.

1.2 (Single-headed) Attention Block

It is helpful to think of the attention block as a “queryable softmax pooling” or soft approximation of a hash
table (it contains a set of key-value pairs, where you can pass a query vector through it). You can also think
of it as a differentiable black box.

Figure 1: A single attention block

For a query, the output is approximately the value that corresponds to the nearest key, measured by inner
product. Here, d is the common dimension of the key and query vector.

sim(qt, ki) =
⟨qt, ki⟩√

d

Therefore, the output is a linear combination of values: Σiαi,tvi where the αi,t ∈ [0, 1] is obtained after a
softmax operation on the similarity values. Recall that softmax allows gradient to flow to Wk, Wv and Wq.
On the other hand, if argmax is used, generally there will be no gradient flows to Wk and Wq for keys that
are not selected as the argmax.

1

1.3 Parallels with CNN

The attention block can be seen as the counterpart of a convolution layer in CNNs. In CNNs, the convolution
layer plays the role of combining information from local neighbours. Here, the attention block is also
aggregating information. The difference is that the attention block, unlike a convolution layer, does not have
learnable parameters - they just respond to queries. We will bridge this gap in section 3.

The attention block is the counterpart to the convolution operation (aggregation of information). The table
structure is similar to the concept of receptive field in CNN. However, in attention mechanism, an increase
in receptive field refers to a larger number of positions in the sequence that the attention block attends to,
rather than in terms of locality as in CNNs.

2 Multi-headed Attention

2.1 Introduction

Now that we know what the basic attention block looks like, we want to have the ability to attend to many
things at once. We can do so with many attention heads, each equipped with its own key, value and query
functions. This is the concept of multi-headed attention. Given an input token, we can query through
multiple attention heads and concatenate the outputs together.

Figure 2: Multiheaded attention

Note: to ensure that the dimensions match with that of residual connection later on, we must make the
dimensions of the queries smaller. This is so that when we concatenate the attention scores, we get back the
same dimension as the input.

2.2 Parallels with CNN

Multi-headed attention is the counterpart of channels in CNNs. There can be many channels, but each
attention head attends to its own channel. This is exactly like the depthwise convolution in ConvNext,
where the convolution takes place per channel. The difference is that in CNNs, each channel is a real
number, whereas here it is a vector.

Also, across different heads, the only thing that distinguishes them is the random initialization of their Wk,
Wq, Wv. This is the same for different filters in CNNs, where the only thing that distinguishes them is

2

the random initialization the weights in each filter. We hope that this broken symmetry leads to different
attention heads attending to different things.

3 Motivation of the Transformer Architecture

We now present the Transformer architecture with a step-by-step walkthrough.

Figure 3: One layer of the Transformer architecture

1. Firstly, we receive input token xt,l from the previous layer. Here, t denotes time, or the position of
this token in the sequence. l denotes the layer.

2. Using xt,l, we create key vector kt,l, query vector qt,l and value vector vt,l by applying linear layers
with weights Wk, Wv and Wq respectively.

3. Store the key vector kt,l and value vector vt,l into the table. The table contains all key-value pairs
generated by input sequence at layer l.

4. Pass the query vector qt,l as an input to the attention block (which has access to the table). Note: the
attention block has a nonlinearity inside - the softmax that outputs the attention scores α.

5. The result of the attention block goes through a linear layer W . This is because the result is a linear
combination of the values, and it would be more flexible to transform it.

3

6. This is now combined with xt,l via a skip connection, motivated by the ResNet architecture.

7. Now, it goes through a Layer Norm. Note that the skip connection in the previous step fixes the
problem of vanishing gradients. Adding a LN now addresses the issue of exploding gradient, since of
goal of Layer Norms is to control the behaviour of the output via standardization. Recall that LNs
also have two learnable parameters β, γ to adjust the mean from 0 and variance from 1 so we will not
lose expressive power.

8. We now add a MLP (with a nonlinearity such as GeLU) to increase the expressive power. Without it,
the nonlinearity in the attention block is too weak and can be bypassed by the skip connection.

9. We use the same strategy to add a skip connection with a LN.

Previously, we have gathered a lot of ideas from the ConvNet and ResNet architectures. We now present
both the ResNet and ConvNext architectures and match the ideas from these two architectures to their
respective Transformer counterparts.

Figure 4: Classic ResNet (left) and ConvNext (right)

Similarities with ResNet:

• Residual connections: this was inspired by the ResNet architecture, where we want to increase
complexity by adding depth and stacking multiple blocks while also ensuring a residual connection.
This ensures good flow of gradients.

• 1x1 64: Corresponds to Wk,Wq,Wv. Wk, Wv, Wq are like the filter weights and are shared in layer l
across all time t, similar to how filter weights are shared in a ConvNet. All look locally at only that
position t, which is similar to the 1x1 kernel.

• 3x3 64: Corresponds to Wk,Wq,Wv and the attention block.

• 1x1 256: Corresponds to W with the MLP + nonlinearity.

Similarities with ConvNext:

• d7x7, 96: Its counterpart is the entire part of the Transformer prior to the MLP, as noted in the
section on Multi-headed Attention. We also see similarity in the applied LN.

• GeLU, 1x1 96: Exactly like the MLP + GeLU part of the Transformer.

4

4 Masking in Attention

Motivation: To process sequential input one token at a time, we can just populate the table one at a time in
the transformer model. However, what if the entire input is available to us and we want to take advantage
of the parallelism? If we naively populate the table with all key-value vectors, that would raise the issue of
“peeking into the future”, where we should not be able to attend to keys and values generated by future
tokens.

The main idea is that we should not perform inner products with the key-value pairs from the future. This
can be resolved in two ways. The first way is to surgically set the resulting value from inner products with
future values to be −∞ i.e. ⟨qt, kt+k⟩ = −∞ ∀k > 0. This ensures that softmax assigns them a weight of 0,
and their future values will never be used. The second way is to perform treatment on the αs instead. Let
softmax run as per normal, then set αt+k = 0 ∀k > 0, then normalize the resulting αs.

5 Cross Attention

The only difference between cross attention and self attention is the tokens used to populate the table. Let’s
examine the encoder-decoder models.

Figure 5: Decoder layers attend to key-value pairs generated by encoder layers via cross attention

The encoder part of the transformer takes in an input sequence (ui)
n
i=1. Each layer will have its own table

of key-value pairs. The decoder takes in a context sequence (ci)
m
i=1. The attention blocks in decoder attends

to the keys and values generated by the same layer in the encoder. In summary, the queries come from the
decoder, and the key-value pairs are supplied by the encoder. It is also possible to use a combination of cross
attention and self attention in the architecture.

5

6 Summary

The conception of the transformer model is not really motivated from a biological viewpoint, but rather from
an engineering perspective. It is implementation friendly and good for parallelization.

However, one downside is the inherent quadratic time complexity of the attention blocks. Each attention
block has to look through the entire set of key-value pairs, whose length is equal to the length of the entire
input sequence. As an example, if there are N queries and M key-value pairs in table, the computation takes
O(MND), where D is the common dimension between the query and key/value vectors. This is because
there are MN dot products, and each dot product takes O(D) time. In self-attention, M = N , so the time
complexity reduces to O(N2D), which is quadratic in N . This presents a challenge in scaling transformer
models.

One way to circumvent this is via an approximate softmax attention through a kernel perspective (for
example, we can approximate the softmax operation via sim(qi, kj) = ϕ(qi)

Tϕ(kj)). This approximation can
effectively remove the quadratic factor and allow Transformers to scale.

Lastly, Transformers can be seen as a generalization of ConvNets. Therefore, it is a more flexible model.
The weak inductive bias inherent to transformers implies that we need more training data to make learned
patterns visible. This motivates the next topic on self-supervision and pre-training, both of which are
absolutely critical for practical use of the Transformer model.

6

Lecture 19: 10/27 (Thursday)

Lecturer: Prof. Anant Sahai

Scribes: Nabeel Hingun

1 Agenda

1.1 Attention, ResNet Style Blocks with MLPs and LN

Last time, we talked about different ingredients that go into building a transformer [3]. The basic
core ingredient was the attention mechanism, which is just a query-able softmax pooling. We also
talked about the multi-headed variant where we can execute many different queries at once into
many different tables.

There are two kinds of attention: self-attention and cross-attention. The difference lies in whether
we are querying the same table we are sticking stuff into or a different table. Attention by itself
has no learn-able parameters associated with it so we need to have learn-able parameters making
the queries, keys and values. On top of that, we have ResNet-style blocks to combine something
designed to use the attention mechanism with standard building blocks like multi-layer perceptrons
and layer normalization to make something we can stack and make deep.

1.2 Position Encoding

The input to the transformer has no sense of ordering. To have some way of imposing order, we
use position encoding to encode the positions of input tokens. The one we talked about last time
was inspired by the hands of the clock, i.e, sines and cosines. This method is friendly to matrix
multiplication and has the nice analogy to advancing the hands of the clock or moving back the
hands of the clock. It gives us an absolute encoding of position which is friendly to relative position
querying.

2 Variant of Position Encoding

There are many variations of position encoding. In particular, there is a distinction between the
one we talked about in last lecture and the one that is used in practice. Last time, we talked about
implementing position encoding as concatenating our input to the position encoding (fig. 19.1).
Here, we can think of the input to the transformer as having two parts: (1) the data and (2) where
that data was in the sequence.

While this ’concatenation’ method can be done in practice and is very logical, a more common
approach is to have the input and position added together (fig. 19.1). The question that arises is
why this even works as it seems less natural.

First, recall that the vector sum is happening in a very high dimensional space (512, 1024, ...
dimensions). In such high dimensional spaces, the position encodings are occupying a very limited
set of the space which leaves a lot of space for the input data. Then, suppose we want to query for
the position only. When we take the inner product, by linearity, we get (1) the inner product of the
position oriented query and the input, added to (2) the inner product of the position oriented query

19-1

19-2 Lecture 19: 10/27 (Thursday)

Figure 19.1: Position Embedding: Concatenation (Left) v/s Addition (Right)

with the position encoding. If the position encoding has a high correlation with the query, then
(2) will be high whereas the position oriented query and the input will be something completely
different. Therefore, the inner product has the ability to be able to pick up positions vs things in
the input. Of course, there will be some interference with the query but not that much and so
we expect that the sum can still make position encoding work. Thus, in high-dimensional space,
adding is also fine for the inner product to be able to pick up positions versus things in the input.
Addition is used in practice and usually has better performance.

Question: We want to use complex numbers because matrix multiplications are rotations
(of the clock) but we are not actually using complex numbers. By using only sines and
cosines, so do we still have some property of rotation?

Answer: The idea of the complex numbers rotating around is used as inspiration for the
hands of the clock since we know complex multiplication can result in rotating these relative
positions. Yet, if we represent complex numbers using a vector of two numbers, then we can
think of complex multiplication as a linear operation represented by a matrix. This means
that with matrix multiplication, it is easy to express a rotation, so the same property we
had with the multiplication of complex numbers, we can basically inherit from the vector
representation using sines and cosines.

Lecture 19: 10/27 (Thursday) 19-3

Figure 19.2: On the left, we have an encoder with Nx encoder blocks. The encoder is usually pre-
trained with some specific task. On the right, we have a decoder made up of Nx decoder blocks.
[1]

Question: If you want to rotate the hands of a clock by some angle, say 10 degrees, then we
have to compute the sines and cosines of 10 degrees to populate the transformation matrix.
Yet, if we look at the linear and non-linear operations in a transformer that define the entire
path of the query or keys, we don’t see a sine or cosine as a non-linearity. So how is it that
we are actually able to move by 10 degrees?

Answer: The queries are the result of a learned transformations. We don’t need to explicitly
compute the sine and cosine computation at runtime. The transformation just has to be
learn-able during training. Whatever the sines and cosines we actually need will come out
during training. It is easy to learn a rotation as a transformation.

Follow Up Question: Does that require a lot of weights if we want to learn all the relevant
angles?

Answer: Yes, there are potentially many different relevant angles we need to learn and so
indeed, we would have many weights. The hope is that the model has enough expressive
power to learn the transformations we need. In fact, transformers are very large models with
high memory cost. For a 1000-length sequence, each with hidden dimension 1000, we can
will need 1 million parameters. In addition, to compute softmax, we need O(109) number of
multiplications and additions.

19-4 Lecture 19: 10/27 (Thursday)

3 Transformer Components

3.1 Attention

The transformer (fig. 19.2) uses a combination of self-attention, cross attention, layer norms and
MLPs. But how is that all working together and why do we need these different components?
Traditionally, in a decoder block, we start with a self-attention layer (bottom right orange block
in fig. 19.2) which is looking at the input and other things in the sequence that might be relevant
to understand what it should do next. Then we have cross-attention (center right orange block in
fig. 19.2). The cross-attention accesses some table with key-value pairs. Typically, the key-values
pairs come from the encoder. Since we have to interpret the embedding of the input token in some
way, there is a weight key matrix that generates the keys and another weight matrix that generates
the values. These matrices, Wk and Wv have learn-able weights. Gradients from decoder shape Wk

and Wv because it is related to the task the decoder is doing (interpret the encoder embedding).
For example, in fig. 19.2, Wk and Wv are multiplied by the last output of the encoder to produce
klt,1, ..., k

l
t,m and vlt,1, ..., v

l
t,m.

3.2 MLP

Finally, the output is passed through some MLP (fig. 19.2). We need the latter because we need a
non-linearity stronger than the non-linearities involved in attention.

3.3 Layer Normalization

There is also a question of why we need layer normalization and what is it doing. Recall that the
attention mechanism is computing an inner product. From the query’s point of view, the inner
product is trying to say, of all the different keys, which is the one which is the most in this direction.
Then we can see that layer norm is useful because it gives the query a particular direction.

Question: Do we need to normalize the keys too?

Answer: Not really. The same query is applied to a bunch of keys but for some keys you
want them to be able to say, “i’m in this direction, yes, but i’m not that strong. If there is
another direction that is stronger, then pick that on”. Whereas the query is really picking a
direction. If we change the norm of the query, we would still end up with the same ordered
sequence of winners of the keys but all that would change is what happens with the softmax,
in terms of how well it does the normalization. But that’s not what we want so we don’t
want to impose a normalization constraint on the keys.

3.4 Query Standardization

Input standardization involves three parts. Take data,

• subtract mean

• divide by standard deviation

• possibly shift the mean and standard deviation by something that’s learn-able.

Lecture 19: 10/27 (Thursday) 19-5

These steps involve two sides: normalizing the size of everything and moving the means around.
When it comes to preventing exploding gradients or vanishing gradients, the means are not relevant
whereas sizes are. In the context of a transformer, when it comes to what we want from the query,
we want it to have a norm that is something reasonable and doesn’t change a lot between queries.
Then, the query doesn’t need biases and only needs scaling. Hence, one of the modifications to the
Transformers that is often done is to remove the bias and stick to the scaling.

Question: When we are looking at a particular encoder layer, we have a self attention block
inside which is looking into a table. Are the contents of the table the same for different input
positions?

Answer: Yes. They are only different if we enforce some sort of sequentiality. On the
decoder side, the sequentiality is often required.

We usually have two different design choices when it comes to the inputs of the attention layers.
For instance, in an arbitrary decoder, which output of the encoder should the attention layer of
block 7 (of the decoder) be looking at? One option would be to have every block look at the last
output of the encoder. So if the encoder is 20 levels deep, then it is looking at the output of level
20. Every single layer of the decoder here is looking at the output of the last layer, layer 20. This
follows the auto-encoder spirit where the output of the encoder is a distilled version of the output.
Typically, this is what is done.

Another option is in the style of a U-net where we can look over at different levels of fineness of
the encoder. So we can imagine a transformer decoder looking at the middle layers of the encoder
for attention.

Question: When we say tables or weights are shared, are they shared horizontally or verti-
cally?

Answer: The standard answer is horizontally. For the same layer, we have the same weights
and if we have an attention block, it will have the same table. But at a different layer, there
will be a different set of weights and a different table that it looks into. That said, it is often
sometimes done to have weight sharing across layers as well.

3.5 Data

Transformers don’t have a strong inductive bias so we need a lot of data to train. We get data
scraped from the web and hopefully if we get all of this, we can get things to learn the underlying
representation of what that language is. That’s what we want our model to actually capture and
then we can use it for different purposes.

4 Word Embeddings

For us to be able to learn from text data, we need to have a way of representing words such that
their representations are meaningful. For example, in computer vision, the pixels of images mean
something. They don’t mean much, but they mean something. Thus, maybe if we had a more
meaningful representation of words, then learning downstream tasks would be easier!

19-6 Lecture 19: 10/27 (Thursday)

Figure 19.3: How we learn embeddings using word2vec [2]

We represent words with embeddings, but how do we learn these representations? The problem with
words is that in the English language alone, you have something of the order of 100,000 words, with
8,000 common words. That’s a lot of words. The default way of thinking of categorical variables
using one-hot encoding is really annoying for words. We would have lots of words close to each
other in meaning but which would not be reflected in this embedding. For example, ‘actual‘ and
‘actually‘ are going to have the same distance from each other as ‘actual‘ and ‘banana‘. Therefore,
this encoding doesn’t tell us anything about the meaning of these words.

There also is a question of why we want vectors corresponding to similar words to be close to each
other in the embedding space. All of our functions are continuous during training, so we expect to
have the basic behaviour of things going in that are close will give things that are close going out.
In particular, for losses, during training, we have we want a kind of continuity where words that
are close get less words than things that are far. Then, if we have representation with vectors of
similar words being close to each other, then hopefully if we make a small mistake during training,
we will have something that’s also close.

Now that we want our vectors to have this property, the question becomes, how do we learn them?
The key idea in word2vec is that words occur in context with other words, i.e, the words that
surround a word tells you what a word is like. Therefore, we want to find a representation that
reflects this idea of having similar words have close embeddings.

Suppose, we want to learn the embedding for the center word c (fig. 19.3). We create a prediction
task, such that, we try to predict the neighbors of the center word. To generate this probability, we
use the standard go to way, i.e, we predict the words that are closest to the center word in terms
of the inner product. Thus, we can take the embedding for a word o given the context and sum up
over all other choices that could be there for the context word.

Lecture 19: 10/27 (Thursday) 19-7

Question: Intuitively, what we want to do is to have an encoding of embedding of words
so that given the neighbors, we can predict a particular word. Here, with word2vec, we are
doing what feels like the opposite, i.e, we are predicting the neighbors given a particular
word. Why do we do it this way?

Answer: The answer is simply because it is easier to do it this way. If there are multiple
inputs and a single output, we need to figure how to combine all this information from the
input. It is possible to do it, maybe through a weighted average of the neighbors, but at the
end of the day, this is a surrogate task, so we can try the easiest thing first.

Note: There is a subtle distinction that two words should have the same representation if they are
roughly interchangeable with each other in a sentence, not that they sit close to each other in a
sentence.

References

[1] S. Levine. https://cs182sp21.github.io/static/slides/lec-12.pdf. 2021.

[2] S. Levine. https://cs182sp21.github.io/static/slides/lec-13.pdf. 2021.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. 2017.

EECS 182/282A Lecture 20: Pretraining and Fine-Tuning

Instructor: Anant Sahai
Scribes: Keaton Elvins, Raghav Ramanujam

1 Tokens

1. Tokenizer: In the typical approach for sequence models, the input is first passed to a
tokenizer. This parses the input sequence into a series of discrete tokens (i.e. Token-1,
Token-72, Token-985...). Once this sequence of discrete objects is generated, they are
then passed to a learnable look-up table.

Aside: For NLP, the byte pair encoding scheme is typically used for this step,
which entails repeatedly grouping the most common occurring pair of characters
together until the desired “token budget” is reached (similar to the grouping in
Huffman encoding but in reverse). This process addresses the issue of encoun-
tering out-of-vocabulary words since they will just be broken down into common
character sub-groups (read more here).

2. Look-Up Table: At this step, each token gets mapped to a vector, which becomes
the actual input that the transformer/sequence model sucks up. These vectors are all
learnable, so this effectively adds (# of tokens × size of input vector) parameters.

Figure 1: Example of input processing for transformer architecture [1]

1

https://huggingface.co/course/chapter6/5?fw=pt

2 Word2vec

2.1 Creating a tractable version of the problem

As we learned in the last lecture, the objective with word embeddings is to find vector
representations of each word such that similar words a, b ∈ V produce similar embeddings
va, vb. An initial approach could be to set up the optimization problem

arg max
u1,··· ,un,v1,··· ,vn

∑
c,o

log p(o|c)

where

p(o|c) = exp (u⊤
o vc)∑

w∈V exp (u⊤
wvc)

The intuition for this approach stems from clustering: we want words that are roughly
interchangeable in context to be placed near each other in the embedding. However, unlike
K-means, our set of words is fixed, meaning we don’t have to worry about fitting new words
in (although we could always do this by recomputing as before).

One large problem with this approach is that when we attempt to run gradient descent,
the denominator of the probability function is extremely costly to compute with a large
vocabulary. To mitigate this, we can consider redefining the problem as something closer to
binary classification. To do so, let’s try a new probability function

p(o is the right word|c) = σ(u⊤
o vc) =

1

1 + exp (−u⊤
o vc)

The problem with this approach, however, is that it consists of only positive examples!
Therefore, the optimization algorithm is incentivized to make all the embeddings line up to
achieve really high probabilities. To address this, we can add

p(w is the wrong word|c) = σ(−u⊤
wvc) =

1

1 + exp (u⊤
wvc)

and optimize the function

arg max
u1,··· ,un,v1,··· ,vn

∑
c,o

(
log p(o is right | c) +

∑
w

log p(w is wrong | c)
)

But this runs into the same problem as before! Now we’re just summing over a huge number
of negative examples, and the loss from these could just dominate. In order to balance this
tug of war, we can instead just randomly sample a few words to be used for the “w is wrong”
negative examples. This approach incorporates both an attractive force for words that occur
together (push vc towards uo) and a repulsive force for those that do not (push vc away from
vectors uw), and we are left with our Word2vec optimization problem

arg max
u1,··· ,un,v1,··· ,vn

∑
c,o

(
log σ(u⊤

o vc) +
∑
w

log σ(−u⊤
wvc)

)

2

2.2 Interpreting the learned embeddings

After the development of Word2vec, researchers began to look at the actual embeddings to
find if any interesting properties were present that might reflect the underlying structure of
a language. After some exploration, they discovered that algebraic relations seemed to have
some meaning with the embeddings. For example,

vec(“woman”) - vec(“man”) ≃ vec(“aunt”) - vec(“uncle”)

vec(“woman”) - vec(“man”) ≃ vec(“queen”) - vec(“king”)

(a) Gendered pairs have
matching differences

(b) Plurality is captured
similarly

Figure 2: Visualization of grammatical structure in the embedded space [2]

While these relationships are slightly idealized, the learned embeddings from Word2vec were
able to capture a surprising amount of grammatical structure. Realizing this, researchers
started to use the model to solve analogies (i.e. If women → man, aunt → ?). In practice,
this returned a mix of nonsense responses and some actually interesting results.

Figure 3: Examples of Word2vec’s performance on more complex analogies [2]

3

Aside: Following this, concerns began to develop around whether all the stuff the
embeddings were learning was desired (e.g. was it learning sexist/racist/homophobic
ideas from the training data). To address this issue, researchers tried going through
datasets to censor out nasty unwanted training points and applying data augmentation
to make the embeddings invariant to these regularities. However, this is still a field of
ongoing interest, as these approaches may not be enough.

3 Pretrained Language Models

3.1 Contextual representations

One big advantage of word embeddings over one-hot encodings is the incorporation of latent
information about the language/word that might otherwise have to be learned by a down-
stream model. However, since the embeddings are constant in word2vec, the same word used
in two different contexts will produce the same embedding.

Figure 4: Same word in two difference contexts [2]

This implies that we need some form of context-specific representation for our model. In
order to address this problem, we can

1. Train a language model on a surrogate task

2. Run it on a sentence

3. Take the hidden state from the model and treat it as the embedding

But this raises the complication: how do we train the best language model to get a high-
quality embedding? What architecture should we use, and how does the surrogate task affect
performance?

One approach is to train on the task of predicting the next word in a sentence while using
a decoder-style transformer architecture (autoregressive idea used by GPT). However, since
we don’t want the attention mechanism to just be able to look ahead in the sentence and
know exactly what to output, we have to implement masked self-attention. In practice,
this is done by setting the relevant inner products to negative infinity, which reduces the
contribution of their values to zero via the softmax.

Masked self-attention works for many tasks but introduces an interesting limitation: the
model can only build context for a word by attending to the ones that came before it. In
Word2vec, however, we were able to look at things on both sides of the center word to build
context. How can we do something similar here?

4

3.2 Bidirectional Transformer Language Models

(a) One-directional transformer used in GPT (b) Bidirectional transformer used in BERT

Figure 5: Differences between popular transformer-based language models [2]

We can modify our approach by changing the surrogate task! Instead of predicting the next
word, we can mask out a small percentage of the input (replace with a [MASK] token) and
train the model on predicting what those words would have been. This self-supervised task
is very similar to what we did with masking in autoencoders, which we analyzed under the
lens of low-rank approximation using PCA. Due to this change, we no longer need masked
self-attention, and the model can build context for a given token using input that both
precedes and follows it.

It is also important to distinguish that there are two losses we can use here: loss based on the
predictions for the masked tokens, and loss for the rest of the sequence. It is critical to find
a balance here, as letting the second option apply too much gradient pressure would result
in the model just learning the identity function and giving up on the masked predictions.
So in practice, the main goal is just to fill in the blanks, although BERT did modify this
scheme slightly to find the right balance.

While BERT was training, not all of the 15% of tokens were actually replaced with the
corresponding [MASK] token. While 80% of them still were, 10% were instead replaced with
some random wrong word (similar to a denoising autoencoder), and the remaining 10% were
just the correct word unchanged [3]. By leaving the token as is sometimes, we allow the
second loss from above to apply a small amount of gradient pressure. This encourages the
model to also take into account the current token, rather than being entirely context based,
and strikes the appropriate balance between the two losses.

5

3.3 Training BERT

While training BERT (as seen in Figure 4a), the researchers took an additional step to try
and force the model to learn sentence-level representations. They passed in two sentences
at a time, separated by a [SEP] token, and randomly swapped the order of the sentences
50% of the time. They then added a surrogate binary classification task, denoted Next
Sentence Prediction or NSP, and asked it to predict if the sentence order had been swapped
or not (in addition to the previously stated task). In order to accomodate for this extra
task, the researchers added a special [CLS] token at the start of each sentence pair, with its
corresponding output from BERT being the output for the NSP task. This little tweak during
pretraining turned out to be very beneficial for downstream tasks like question answering
and natural language inference, as the model was forced to learn both context-dependent
word-level and sentence-level representations.

Aside: Some people have tried using Word2vec as a starting point for the token-
to-vector encoding for models like BERT, but it isn’t an exact match since not all
tokens are words. While they often are, these models have some token budget they
must stay within, so sometimes complicated/rare words are broken up. Check out
https://beta.openai.com/tokenizer for an example of how OpenAI’s GPT family
of models process text into tokens.

4 Fine-Tuning

4.1 Using BERT

When it comes to actually trying to use BERT on some downstream task, we can think
back to what we did with PCA: use an autoencoder approach, train the model, chop off the
decoder part, and just use the embedding produced by the encoder on something new. The
same works with BERT! One example would be entailment classification, or whether or not
one sentence is logically a consequence of another. Since this is more related to the NSP
task from training, we can cut off whatever classifier/linear-layer was used to make the NSP
prediction, pass the embedded representation that BERT built to a new model, and train
on our entailment task. However, now we have two options for this last fine-tuning step:

1. Freeze BERT and only train whatever classifier we’ve added at the end: This approach
is similar to how we thought about the autoencoder in the PCA context. The entire
encoding network is frozen and can be thought of as some input featurization for the
final component to run inference on.

2. Train BERT end-to-end on the new task: Sometimes this approach of fine-tuning the
entire model works better, but it also takes significantly more compute. In addition,
the ratio of unlabeled to labeled data is often enormous, so trying to train such an
over-parameterized network on a small set of labeled data may not be worthwhile.

6

https://beta.openai.com/tokenizer

4.2 Additional Tasks

Since the above procedure only really uses the first output from BERT, it is natural to
wonder what uses the other outputs might have. It turns out that BERT is useful for many
tasks, it simply depends on which components the user wants to use.

(a) BERT model during training (b) BERT model during fine-tuning. Utilized
outputs depend on use case

Figure 6: BERT model during training vs fine-tuning [2]

As seen in Figure 4b, we can build on top of the class label for classification tasks like above,
or we can also select different outputs depending on the given task. For example, if we are
trying to identify the span of contents in a paragraph that answer a given question, we can
pass in the question followed by a separator token and the paragraph. We can then build on
top of the outputs from the paragraph and fine-tune a model to choose the start/end of the
span. The final example in the figure is entity-labeling, or identifying things like people’s
names, locations, and other categories.

4.3 Using BERT for feature generation

One question that may arise is how to use BERT to get features like we did with Word2vec.
Since BERT has many layers, we have a choice of which hidden state to use. In practice,
it is worth testing out the embedding from different layers, as well as the sum of different
layers, to find the best possible contextualized representation. This idea is visualized below.
More info can also be found at http://jalammar.github.io/illustrated-bert/.

7

http://jalammar.github.io/illustrated-bert/

Figure 7: Representation scores of possible choices for embedding [4]

Aside: When exploring this, one may find the second-to-last layer works better than
the last for feature generation. While the exact reason is up for debate, intuition
for this could be that the last layer is more specific to the surrogate task while the
second-to-last layer contains more general information.

5 Surprising Results With GPT

In the problem of text generation, we give the model some input for context and ask it to
spit out a continuation (e.g. given the first paragraph, finish this article). Due to BERT
being bidirectional and trained with context on both sides, it is not particularly suited or
well-performing in this task. However, this problem is perfect for autoregressive models like
the one-directional transformer architecture used in GPT (partially visualized in Figure 3a).

In fact, we can frame many tasks as text generation and see how GPT performs without
any additional training (and therefore without performing further gradient descent). For
the example of machine translation, one could input “The translation of ‘she’ to Spanish is
‘ella’. The translation of ‘ball’ to Spanish is...” to GPT, and find that it would return the
correct translation (‘pelota’) more times than just luck would suggest. The implications of
such properties are still being figured out.

Food for thought: How would you frame the task of article summary to GPT?

8

References

[1] Alammar, J (2018). A Visual Guide to Using BERT for the First Time. https:

//jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

[2] Levine, Sergey. NLP Applications: CS 182 Lecture Slides. https://cs182sp21.github.
io/static/slides/lec-13.pdf

[3] Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. 2018.
https://arxiv.org/abs/1810.04805

[4] Alammar, J (2018). The Illustrated Bert, ELMo, and co. [Blog post]. Retrieved from
http://jalammar.github.io/illustrated-bert/

What we wish this lecture also had to make things clearer

The slides and the visuals were great, but we think the mechanics of byte pair encoding
got somewhat brushed over. We would also have liked to see some visuals for BERT word
embeddings similar to the ones we got for Word2vec, as well as a brief exploration of the
main idea behind ELMo.

9

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://cs182sp21.github.io/static/slides/lec-13.pdf
https://cs182sp21.github.io/static/slides/lec-13.pdf
https://arxiv.org/abs/1810.04805
http://jalammar.github.io/illustrated-bert/

CS182 / CS282 - UC Berkeley

Lecture 21: Meta-learning, Fine-Tuning, Transfer Learning
3rd November, 2022

Lecturer: Prof. Anant Sahai Scribes: Aman Saraf, Tianlun Zhang

Reviewers: Kiran Eiden, Nikhil Prakash, Jiayang Nie

1 Lecture Overview
The context for this lecture is based on a exploration of transformer based language models which
typically have very large parameter sets. This lecture will seek to explore strategies for fine-tuning
and then come back to look at pre-training.

2 Fine Tuning
The overall approach to fine-tuning is as follows:

• Step 1: Pretrain a large model with self-supervision and lots of data. (Classical ML Analog:
PCA on unsupervised data)

• Step 2: Fine-tune the model on task specific data set or objective. (Classical ML Analog:
Train a classifier or regression model on data with reduced dimensionality)

Next we look at some strategies to fine-tune effectively, considering the benefits and limitations of
each of them.

2.1 Strategies to Fine Tune
Let’s start by considering the BERT-style model [1], which is pre-trained with two tasks:

• Sentence Order

• Fill in the blank (Masked Denoising Autoencoder)

2.1.1 Decapitate training "head" and only train a new "head"

Note: Here "head" refers to the part doing the surrogate task, and not a transformer "head".

In this strategy, we remove just the surrogate task layers from the end of the model and replace
them with another newly initialized head. This head should be well suited to our task and usually
comes from a similar domain to the surrogate tasks that the original model was trained on.
This new head now operates on features extracted from our task’s dataset by the backbone for our

1

model. This is like lifting the feature space and treating the output before the surrogate head as
features we want to run our task on.
For example we could:

1. Replace the final linear layer and softmax for the final sentence order task with a new linear
+ softmax layer for your own specific sentence-level task. We keep every other layer intact.

2. Train the new final layer, using Stochastic Gradient Descent (or any optimizer of your choice)
for your specific task.

Note: In this approach we treat BERT as a feature map, where the last layers provide features.

Here we prompt the model using the token for sentence order classification. Remember that for
BERT the input is as follows:

<classification token> sentence 1 <separation token> sentence 2

where sentence 1 and sentence 2 are masked. Masking is done by replacing a word by the special
mask token, and therefore removal of prompt words requires no scaling like in dropout. This is
also possible since tokens are discrete whereas in real number spaces having mask tokens is more
difficult.

2.1.2 Variation: Use other BERT Embeddings

The choice of using features/embeddings from the last layer is not fixed. We can use other embed-
dings that BERT gives us. For example:

• Average together all the layers from the transformer.

• Concatenate the last four layers (arbitrary)

• Average together the last four layers (arbitrary)

• Use the last N − 1 layers

• and so on...

Similarly, if the task is “word-level” then we can use BERT as a word-level feature extractor as
well.

Notice that here the language model almost behaves like a feature extractor, and exploring these
strategies to combine features or choose the extraction backbone, is almost like a hyper-parameter
search problem.

2.1.3 Major Variation: Train the entirety of the model after replacing head

Previously, we were only training the final layer and everything else was frozen. In this strategy,
we will let all the weights adapt to our new task by training all layers at once.

2

Figure 1: Illustration of different strategies of for fine tuning.

This strategy has a few advantages and many disadvantages, as follows:

• Pro:

– Increased Capacity: We provide more capacity in the model, to fit our new tasks. This
is obvious as we are training many more weights now in an over-parameterized model.

• Cons:

– Fear of Overfitting: Excessive parameters leave us open to this risk.
– Harder to Scale: to lots of different tasks - for example, if we only train the individual

heads for each of our tasks, we only store each individual head, whereas if we allow
the entire model to train we need to store a version of the entire model for each task.

– Divergent Backbone Gradients for different tasks: If trained end to end on different
tasks, the various gradients can start pushing the backbone in all sorts of directions,
often divergent from one another.

3

2.2 Interesting Questions:
2.2.1 How is it possible, that "pre-training + fine-tuning" works, when just fine-tuning from

random initialization does not work? Is not the model equally large in both cases and
heavily over-parameterized?

There are two explanations for this behavior, although some questions still remain:

• Explanation 1: Somehow pre-training gets us to a “fortunate” initial condition. This
initial condition is particularly suited for fine-tuning.

• Explanation 2: Because we have so many parameters, it’s as though we are training a
generalized linear model using “derivative” features.This works because the principal
features of the generalized linear model are aligned to this family of tasks.

2.2.2 Is it necessary to replace the head with a linear + softmax layer or can we use other
layers like Random Forests?

Intuitively should work similarly to how random forests work for other problems. Need to
try it out.

2.2.3 Are there certain architectures for backbones and head combinations that when pre-
trained adapt well to head replacement for other tasks, or that allow for training with
multiple different heads without degrading performance for each other?

Seems like an open question.

3 Emergent Useful Behaviour in Large Language Models
Interesting new behaviors were observed in large language models like word2vec and Generative
Pre-trained Transformer(GPT) [2]:

3.1 Word2Vec:
It turns out the geometry of learning word embeddings can capture regularities of the meanings.
For example, using the difference between two words’ embeddings learned by word2vec in solving
the “analogies” problem, can get better results than guessing without any additional training:

Solving “analogies” example:
Input: (“Man”, “Woman”) (“King”, “?”)
Predict(output) : “?” — the right answer should be “Queen”

Here the strategy for extracting the analogy answer without training on this task was to use the
difference vector between embeddings.

4

emb(”King”) + (emb(”Woman”)− emb(”Man”)) = emb(”?”)

By calculating the distance vector between the embeddings of the prompt analogy (in this case,
"Man" and "Woman"), and then adding that to the incomplete analogy (here, "King"), we can pre-
dict the analogy output should be "Queen".

A more dramatic example of such learning, GPT-like models demonstrated an ability to answer
many questions and complete sentences from just pretraining on predicting the next token tasks.
Complete the sentence: Seed GPT with some text and see what it says next

Example:
Input : "Bob went to the zoo when he was frightened upon seeing a ferocious"
GPT continues: "...tiger. This tiger was huge. . . ."

People observed even more surprising behavior in that GPT could be used to answer questions. For
example, when seeded with a prompt that provides analogies of states and their capitals, GPT was
typically able to produce the capital for any state when asked to continue:

"Let’s think of capitals of states. For example, the capital of California is Sacramento; the
capital of Massachusetts is Boston; the capital of <QUERY STATE> is "

Here <QUERY STATE> could be any state and GPT would answer with the capital of the state
correctly. This led to the area of prompt engineering - figuring out prompts that make the models
do what we want. It turns out that we can get a language model to perform new tasks simply by
exploring the generation capability of the model and picking appropriate texts, without any further
training. We can simply treat the generative language model as a black box and encode our tasks
as a call to that black box. There are no gradients and weights updating in this process. This is
often called Zero-Shot or Few-Shot learning.

References
[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[2] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

5

Lecture 22 Scribe Notes

Ann-Katrine Christiansen & Jesper Hauch

November 8th, 2022

1 Continue Fine-tuning

In the last lecture, material regarding large language transformer based models was covered.

More specifically, it was seen how to utilize models, such as BERT and GPT, for tasks

different from their surrogate task. Fine-tuning models to a different task, ensured savings on

computation and a better starting point for further training. Table 1 shows different methods

of fine-tuning covered in this lecture and the last lecture.

“Feature Extraction”

Train new head

“Fine-tuning”

Retrain everything

“Prompt Engineering”

No gradient step, zero shot,

few shot

“Prompt Tuning”

In “computer-ese”

w/ gradients

Number of parameters

that need to be trained
Small to Medium Huge None Small

Amount of task specific

training data it can handle
Small to Huge Small to Huge Small Small to Huge

Multi task scalability Good Bad Good Good

Performance on

desired task
OK Good Bad to OK Good

Table 1: Story of fine-tuning so far.

1.1 Feature Extraction

The first column of Table 1 describes a classical approach, where the pre-trained model is used

to extract features as previously seen in PCA and k-means. This approach is conducted by re-

moving the head of the pre-trained model and replacing it with a new task-specific head. Dur-

ing training, the weights of the pre-trained model are freezed and only the new head is trained

to perform the task. The new task-specific head can choose to ignore or give precedence to

certain parts of the pre-trained model depending on their relevance. This is why adding and

training a new head works. There are multiple ways to extract the weights/features from the

pre-trained model, for instance taking the weights of the last layer or the average of the top

k layers as seen in the last lecture. This is known as the feature extraction paradigm.

1

In this paradigm, a small to medium number of parameters need to be trained since only the

new head is trained for the different task. When training a new head, SGD based training

is used and the approach can therefore handle any amount of data (the more, the better).

Additionally, this paradigm is good in multitask scalability since a new head can be trained

for each task. The performance on a desired task is viewed to be “OK”, since only the head

of the model is trained. Thus, the model only have a few parameters to adapt to the specific

task.

1.2 Fine-tuning

Another approach, seen in column two of Table 1, is to not freeze the weights of the pre-

trained model and use it as an advantageous starting point for training the model to perform

a different task. This paradigm is called fine-tuning. Different strategies regarding the head

of the pre-trained model have been used, where one keeps the head for the new task and

another removes the head and replaces it with a new task-specific one.

Contrary to the feature extraction paradigm, retraining the entire model entails training a

huge number of parameters. However, like the feature extraction paradigm, fine-tuning can

handle any amount of data due to SGD based training. Unfortunately, fine-tuning scales

badly for multiple tasks. This is due to the large size of the model which needs to be trained

separately for each task and catastrophic forgetting/interference (explained more in depth in

Section 2). Fine-tuning can still achieve good performance on specific tasks despite the poor

multi-task scalability.

1.3 Prompt Engineering

A third approach, basic prompt engineering, treats the entire pre-trained model as a black

box, where information from the model is retrieved with prompts. The prompts can be inter-

preted as questions framed in such a way, that makes the model do the task that you want.

There are different ways to construct the prompt, where zero shot and few shot was covered

in the last lecture. Examples of these can be found in Box 1. The internals of the model are

not considered directly and no additional training is performed. Thus, training parameters

using gradient steps is not possible in basic prompt engineering. In this way, you rely on the

model’s learned embeddings of a language to perform a different task.

Basic prompt engineering can only handle a limited amount of training data, since it must

be included in the prompt given to the model for a specific task. Due to the transformer

like architecture of the pre-trained model, there is a limit to how much training data can

be considered at once due to the quadratic scaling of complexity. Different methods exist to

2

compress the training data before constructing the prompt. For example, utilizing concepts

used in support vector machines, where some data points are considered more important

than others. In this paradigm, you have one prompt per task which ensures good multitask

scalability as no additional training is needed. For prompt engineering, it is surprising that

it even works but performance is not great compared to the other paradigms.

Box 1: Examples of zero shot and few shot

Zero shot is when the model is asked a question directly without any training examples.

A zero shot example is to ask the model “What is the capital of California?”

Few shot is when the model is provided with a few training examples included in the

question or prompt. A few shot example is “The capital of Massachusetts is Boston.

The capital of Arizona is Phoenix. What is the capital of California?”

In both cases the model is expected to answer “Sacramento”.

1.4 Prompt Tuning

Prompt tuning is the last paradigm covered in this lecture and arose from the wish to not be

limited by the dataset size and lack of gradients in prompt engineering. The main idea is to

create prompts in the computer’s continuous spaced vector language (“computer-ese”) instead

of English or any other human language. In prompt tuning, you start out with an English

language prompt in vector form, which is updated by gradient steps to make the prompt more

understandable for the computer. Tuning the prompt greatly improves performance seen in

basic prompt engineering while maintaining scalability. This paradigm will be covered further

in the next lecture.

1.5 Note on Training

In essence, the specific parts of the model architecture, that are trained when learning a new

task, is illustrated in Figure 1. In all the aforementioned paradigms, you execute batches at

training and you can therefore also execute batches at use/test time. For instance, in prompt

engineering you can group together different tasks in a batch and execute all at once. The

same applies for feature extraction, where all features from the model can be extracted at

once, and then used to run the specific head. When training a model to do multiple tasks at

once, each task has its own loss function allowing it to adjust independently.

3

Figure 1: Illustration of model parts that are trained when learning new tasks.

2 Catastrophic Forgetting/Interference

Catastrophic Forgetting describes the phenomena of deep neural networks forgetting how to

perform old tasks when trained to do new ones. The old task can be interpreted as the

surrogate task performed during pre-training, whereas the new task can be the fine-tuning

task at hand. A simple example of catastrophic forgetting in computer vision is found in Box 2.

Catastrophic forgetting is especially of interest in continual learning, where models learns a

series of tasks sequentially. Traditionally, this has been largely important for people working

in artificial intelligence, since they are trying to achieve models that can keep learning in a

real environment. Counterintuitively, the phenomena of catastrophic forgetting can still occur

even when continual learning is not trying to be performed.

Catastrophic forgetting does not align with our intuition of how deep learning models work.

From a convolutional neural network perspective, our intuition is that early layers learn more

basic low-level features, such as edges, local configurations of edges, component pieces, and

textures, whereas the last layer learns task-specific features. In reality, this intuition is wrong,

since earlier layers might already be somewhat task-specific. The somewhat task-specific

means that there is distilling information that is generic to the problem domain. However,

this distillation is favoring information that is relevant to the task and irrelevant information

is favored less. This corresponds with what is seen in Table 1, where better performance

on a desired task is found when the entire model is retrained in the fine-tuning paradigm as

opposed to only training the head in feature extraction.

4

The fact that our intuition is different from reality gives rise to two questions.

1. How are task-specific features learned in early layers?

2. Why can learning these task-specific features early on break performance on previous

tasks?

For the first question, it turns out, that when skip connections were introduced in neural

network architectures, it became possible for early layers to learn task-specific features. This

is a consequence of the weights being directly influenced by the loss from the final layer, which

they can adjust to accordingly. The ability to learn task-specific features in early layers turns

out to be beneficial in other contexts, such as being able to fit very large models on mobile

devices as a result of early exiting. To answer the second question, if the earlier layers have

adjusted and shifted out of alignment, the final head is unsuccessfully trying to pull all the

layers back into alignment to perform the previous task. The information from the previous

task might still be present in the model, which can be evident by the great performance

achieved when retraining the previous task head.

Box 2: Example of catastrophic forgetting in image classification

Consider learning image classification with a convolutional neural network and dividing

the training data to have each of the classes one at a time when training. All the data

is utilized but the ordering in which classes occur is simply changed, as opposed to the

random shuffle, that is normally done.

If the above procedure is followed, it can be observed that the model will become good

at doing the first class. After the first class the model will do bad at the second class

at first, but performance will increase as the model sees more examples of the class.

This pattern will repeat itself throughout the rest of the training data. If the model is

presented with an image seen from a previous class after a while, it will have forgotten

how to correctly classify it even though it was able to do it earlier.

2.1 Solving Catastrophic Forgetting

A remedy for catastrophic forgetting can be to make early layers less task-specific but it is

not considered as the main objective. The main objective is to ensure that the old task heads

adapt while training new ones. As a result, early layers will have less task-specific information.

Approaches that try to achieve this are provided below:

• The naive approach.

5

• Replay during training.

• Learning without Forgetting.

The naive approach is to do batch learning by having different tasks in the same batch

instead of continual learning. In this way, the early layers learn low-level features that are

good across all tasks and the heads learn to classify appropriately for all the tasks. This

approach is not helpful as each time a new task is introduced, it is necessary to train on all

tasks again.

A way to approximate the naive approach is the idea of replay during training. This idea

is inspired by research in the neuroscience literature, which is described further in Box 3. The

engineering approach to replay is to insert examples of the old tasks when training on the

new task. As a result, when replaying old tasks to the model, it allows updating the heads

of the old tasks so they are not forgotten when training on a new task. Replay is the golden

standard of handling catastrophic forgetting today. However, replay incurs a minor problem

related to storing examples of the old tasks in the replay buffer.

Another approach, described in the Learning without Forgetting paper is to only use new

task data to train the network while preserving the original capabilities [1]. This is done by

keeping a score for new task examples by creating pseudo-labels from predictions on the new

task using the old heads. Afterwards the entire model is retrained on the new task using the

pseudo-labels generated previously [2]. Therefore, in this approach, the old task heads are

generating the target for the new task.

The learning without forgetting approach is related to knowledge distillation, where the gen-

eral principle is that a learned neural network, that is reasonable good at doing a task, can

be used to generate analog labels. This introduces the need for analog loss functions during

training, such as mean squared error. The gradients calculated from the loss are used to

update the new version of the old heads, and the lower layers. One variation of knowledge

distillation is to treat the outputs of old tasks as probabilities, which can be modified by rais-

ing them to a (fractional) power, and use cross-entropy loss in retraining. A common choice

is to take the square root of the probabilities, as this softens the distinction between large

and small probabilities. Oppositely, raising probabilities to a non-fractional power, increases

the distinction between large and small probabilities.

The performance of learning without forgetting is subpar compared to replay but is better

than doing nothing. The problem with learning without forgetting compared to replay, is that

distributional shifts are present, as only the new tasks distribution is observed and the old

6

task distributions are solely being updated by the new tasks. This causes decay of performing

the old tasks.

Box 3: Connecting catastrophic forgetting to neuroscience

In the early development of deep neural networks, researchers found that catastrophic

forgetting occurred when they tried to use a pre-trained network to learn a new task.

From the perspective of viewing neural networks as some variation of a biological

system, it was considered unrealistic that humans forget how to perform an old task

when learning a new one.

In the neuroscience literature, it was found that when humans and animals dream,

they replay experiences to build better memories. The replay of experiences was used

to address the problem of catastrophic forgetting in artificial intelligence, when the

concept of replaying training examples was introduced by using a replay buffer.

3 T5/BART

Recall talks about BERT and GPT from previous lectures. BERT is considered as an encoder-

only transformer model and a masked auto-encoder, whereas GPT is considered as a decoder-

only transformer model and training is predict-next-token. BERT is made for the feature ex-

traction paradigm, since it is good at extracting context-specific features. For GPT, it is more

targeted towards the prompt engineering paradigm, where generation of text is of importance.

Researchers found it odd that architectures only incorporated either an encoder or decoder

strategy. As a result, Google and Facebook created T5 and BART respectively, which are

both encoder-decoder transformer models and are basically the same idea. The idea was that

researchers wanted to design a model that targeted the fine-tuning paradigm, which is the

most widely used of the paradigms covered. T5 and BART are trained on massive corpora of

text like BERT and GPT, except these architectures take advantage of their encoder-decoder

architecture to provide greater flexibility for future/downstream tasks. The key idea of T5

and BART is a masked auto-encoder, where entire spans of tokens can be masked without the

model knowing how many tokens are masked. This is unlike BERT, where spans of tokens

cannot be masked without the model implicitly knowing how many tokens are masked given

the positional encoding. An example of this can be found in Box 4.

7

Box 4: Example of masking in BERT, T5 and BART

Let us consider the following sentence:

“Thank you for inviting me to your party last week.”

Imagine masking “for”, “inviting”, and “last” in the above sentence.

In BERT each masked word is replaced by a mask token. Therefore, masking this

sentence would look like the following:

“Thank you <MASK1> <MASK2> me to your party <MASK3> week.”

For T5 and BART, entire spans of tokens are masked without implicitly telling the

model how many tokens are masked. Therefore, “for” and “inviting” are masked with

the same mask token. The masked sentence looks like the following:

“Thank you <MASK1> me to your party <MASK2> week.”

There is a subtle difference between how T5 and BART output their predictions to the

masked tokens. T5 will fill in the masks by answering a prompt: <MASK1> is “for

inviting” and <MASK2> is “last”. BART will fill in the masked tokens by returning

the unmasked sentence seen at the top of this box.

4 What we wish was explained more in detail

We found that the Learning without Forgetting approach could have been described better

in the lecture by use of examples. Additionally, as indicated by one of the reviewers, it

was unclear how the differences between BERT, T5, and BART end up affecting model

performance.

References

[1] Zhizhong Li and Derek Hoiem. Learning without Forgetting. 2016. doi: 10.48550/ARXIV.

1606.09282. url: https://arxiv.org/abs/1606.09282.

[2] La Tran. Learning without forgetting simplified - Towards Data Science. Nov. 2021. url:

https://towardsdatascience.com/learning-without-forgetting-simplified-

33243bd0485a.

8

https://doi.org/10.48550/ARXIV.1606.09282
https://doi.org/10.48550/ARXIV.1606.09282
https://arxiv.org/abs/1606.09282
https://towardsdatascience.com/learning-without-forgetting-simplified-33243bd0485a
https://towardsdatascience.com/learning-without-forgetting-simplified-33243bd0485a

CS 282 Deep Neural Networks Fall 2022

Lecture 23: Nov 10, 2022
Lecturer: Anant Sahai Scribe: Jing Xu, Kiran Ganeshan

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

23.1 More Details on Prompt Tuning

Recall the prompt tuning setup, which is shown in Figure 1.

Figure 23.1: Framework of Prompt Tuning

For example, consider the prompt ”What is the capital of California”. We might consider this prompt to be
part of a task that involves recalling capitals. However, the only token which specifies which specific subtask
we want to solve is the ”California” token. We refer to this as the Task Specific Input token in Figure 1.
The remainder of the prompt could be changed without changing the semantics of the question.

With this in mind, note that the outputs of the Transformer depend only on the real vector-valued inputs
that are produced by the embedder. This raises the following question: why do these real vector-valued
inputs need to correspond to English sentences? (Why would it be that the output of the embedder is the

23-1

Lecture 23: Nov 10, 2022 23-2

best choice?) While there are a finite number of choices within our embedding table, there are infinitely
many choices for our inputs, so we can utilize gradient descent to find the best one. Fine tuning works
with both small and large models, while prompt tuning seems to only work super well with larger models.
The only way information is propagated to the next input is through the population of the attention tables.
Why do I need consistency across layers? This is the inspiration for soft prompt in between layers. The
supervision will be provided by the same loss function used in the feature-extraction view of task-specific
finetuning. These are known as soft prompts. In Figure 1, there is a soft prompt in each transformer layer.

Note: this idea requires that we sample outputs in a differentiable way (with respect to scores) at the orange
boxes to enable gradient flow to the prompt inputs. For example, argmax may not work.

Questions:

• How do we choose the length of our prompts?
→ Start with an English prompt that works OK, and stick with that length.
→ Search over prompt lengths for maximum accuracy, starting with the shorted prompt lengths.
Which of these performs better is very sensitive to the underlying task.

Advantages:
1) Improves performance on underlying task
2) Maintains scalability by keeping the model weights the same across tasks
3) Allows us to use large training datasets
4) Lets us leverage ensembles, etc... (Standard Gradient Descent Approach)
5) Avoids the large performance differences between semantically similar prompts suffered by manual prompt
engineering
6) Lets us use feature extraction as well, unlike manual prompt engineering

Disadvantages:
In order to reach full fine tuning level performance, we normally must use very large models. Example: If
the transformer is a very large model (10billion+ params), then prompt will approach performance of fine
tuning. If the transformer has 100 million params, for example, then prompt tuning will not get you there.
This is not fully understood.

How can we improve this further?
A) Put soft prompts around the input, rather than having the input follow the soft prompt
B) Apply a learnable mapping to the input itself
A’) Let the soft prompt depend on the input, rather than learning it independently
C) Add soft prompts to intermediate layers of the Transformer. Language models observe the initial condi-
tion and generate and continue the flow of the ”differential equation”. The prompt shapes the evolution of
the system. We get a richer shape of how we set the initial conditions.

Lecture 23: Nov 10, 2022 23-3

Questions:

• Would it help to add a trainable layer between the embedder and the soft prompts?
→ No, since this would just be another way to learn soft prompts. This time, soft prompts would be a
linear transformation of embedder outputs, rather than parameter vectors. If we use a more complex
model like an LSTM, this becomes identical to A’.

• If we add soft prompts to an intermediate layer in the Transformer at a token T , throwing away the
output from previous layers at T , do we stop gradient flow to the soft prompts at the input?
→ No, because there is layer-wise self attention. Specifically, because the outputs of the first layer at
later tokens depends on the keys and values of the first layer at T , there is ”sideways” information flow
along the sequence dimension at each layer, so the input soft prompt still receives gradient flow. The
advantage of using soft prompts in intermediate layers is that performance benefits extend to much
smaller models.

• What is the relationship between approach C and skip connections?
→ This approach is uniquely opposite to skip connections in that rather than encouraging gradient flow
by adding inputs, we completely overwrite the intermediate values with a parameter vector, stopping
gradient flow.

Figure 23.2: G0 Model

Lecture 23: Nov 10, 2022 23-4

Aside

• Knowledge Distillation: use what’s learned before as a source of labels
→ Take my training data and cross-entropy loss and train a model called generation zero model shown
in Figure 2.

→ Consider Figure 3. Which is more true? The data points or the line? On one hand, the data points
come from the actual world like experiments and have a truth value in that. However, the points are
all noisy, and what you care about is the underlying pattern, and if you have successfully captured
that, then the line is more true. The points are merely in the world and have all the hindrances of the
real world. But, what you are truly looking for is the platonic reality of the model of the real world
and the line is closer to that than the points. You ask the question, ”maybe the outputs of my model
are more true?”. A good model is smoothing noise and other artifacts out of your data. Classification
data is always corrupted. You know a cat is more dog than it is ice cream. But the labels did not
reflect that at all. The labels only assign one class to each image. The scores of a classification model
will presumably tell you that it is mostly a cat, but if I had to pick another class a good second choice
would be a dog. What you learned from the G0 model is richer that your original training data.

Figure 23.3: Which is more true?

→ Therefore, we can update the model with knowledge distillation loss like Figure 4.

Figure 23.4: Iterations based on Knowledge Distillation

Lecture 23: Nov 10, 2022 23-5

23.2 Meta-Learning

23.2.1 Multi-task Learning

Suppose we have a whole family of tasks, each with its own training data, and we want to find a system that
can quickly/reliably learn new tasks. The new task is unseen.

Approaches to learn the new task:
1) Follow ”feature extract” paradigm
2) Follow ”fine tuning” paradigm

More details for ”fine tuning” paradigm, what do we do on a new task?
a) Initialize our network with some parameters.
b) Do K-steps of SGD using our training data.
c) Evaluate on our hold-out set.
3) Follow nearest-neighbour paradigm
...

Consider the ”fine tuning” paradigm, where we use MAML(Model-Agnostic Meta-Learning).

Figure 23.5: Framework of MAML for Learning the System

Let’s just do SGD on the above problem in ”fine tuning” paradigm shown in Figure 5. We split the tasks
into training data and testing data. For this framework, the input is the initial parameters and the output
is the loss. Therefore, we can do SGD for the system.

Lecture 23: Nov 10, 2022 23-6

Questions:

• If we approach this according to Figure 5 with large K, could this lead to exploding or vanishing
gradients?
→ Yes, it is a real concern. Therefore, we should keep K reasonable. We should sample each task
many times and take different subsets of training data, since we can only afford to do so many steps
of SGD.

• What is θ̃?
→ These are the parameters fine tuned via SGD, which we can use on on testing data.

K-steps SGD itself in Equation 1 is differentiable, and we can view the equation like an RNN.

θl[i] = θl−1[i] + η ∗ (−Gradient) (23.1)

Questions:

• Comments
→ The goal of this algorithm is to find meta-parameter values such that optimal parameter values for
each task are within 1 gradient step from the meta-parameter values. It seems unreasonable that we
could find such meta-parameter values, as individual tasks likely have optimal parameter values that
are far away from each other in parameter space. However, if we were to try taking multiple gradient
steps and differentiating through them, this would create a more complex version of the algorithm
that takes 1 gradient step. Therefore, we try taking 1 task-specific gradient step before exploring
fancier algorithms. More generally, to create fancier algorithms, we should try what basic things first
and get insights.

• What is the relationship between this approach and the second derivative, since second derivatives
don’t work on ReLU nonlinearities?
→ Yes, it looks like we do second derivative here. It turns out, however, since we use an approximation
for the Hessian that only relies on taking multiple first derivatives, we never need to consider the second
derivative of the ReLU function.

CS 282 Deep Neural Networks Fall 2022

Lecture 24: Meta-Learning
Lecturer: Anant Sahai Scribe: Terrance Wang, Wyame Benslimane

1 . Recap: MAML - Model Agnostic Meta-learning

1.1 What is the problem we are trying to solve:

In previous lecture, we discussed meta-learning. To put it simply, we are trying to learn algorithms that
learn from other learning algorithms. Model-Agnostic Meta-Learning (MAML) extends this idea and tries
to do multi-task learning by fine-tuning. Therefore we want to optimize for a pre-trained model that can
adapt to a variety of tasks in a few gradient steps.

Figure 24.1: Meta Learning principle

1.2 What does the test-time look like?

The first step in this process is to start with a pre-trained model. Our choices are:

1. A model that already has a ’ready to modify’ task head (see figure 24.2): In all deep models, the last
block (linear layer) is responsible for converting the features learnt by the deep model to outputs for
the problem the model is trying to solve. This block is what we call the task head. For example, in a
classifier, this block is responsible for outputting the probability scores of different classes.

2. Start our pre-trained model with randomly initialized task specific head.

24-1

https://arxiv.org/pdf/1703.03400.pdf
https://medium.com/abacus-ai/a-beginners-guide-to-meta-learning-73bb027007a

Lecture 24: Meta-Learning 24-2

The next step in this process is to train the model using task specific training data, this can also be done in
2 different ways:

1. Fine tune the entire model.

2. Just train the task specific head.

Then we evaluate performance on task specific held out data. This step gives us a quantitative measure of
how well we did.

Figure 24.2: features generated by the deep model get fed into the task head to be converted to outputs.

Figure 24.3: MAML Pseudo-code Source

1.3 How do we optimize this problem?

In order to train any model, the first thing we need to have is training data. Therefore we need a lot of
example tasks where each task has labeled training data. The next step is to use the standard approach
for solving this problems in deep learning: SGD. This means that we are going to iterate the process below
until it converges (or is stopped early):

1. Pick a mini-batch of tasks from training data.

2. Use the current parameters to evaluate the model on this batch (as though it was test time) and
compute gradients using back-propagation.

https://arxiv.org/pdf/1703.03400.pdf

Lecture 24: Meta-Learning 24-3

3. Update the model’s starting parameters with a step of size ηouter times the negative gradient.

This training procedure has a key difference with traditional model training. MAML requires us to evaluate
the model on the held out set with a differentiable loss function. (e.g.: cross entropy loss instead of a binary
right/wrong for a classification model) This is a necessary difference because instead of simply determining
model performance on the held out set, we also want to update our initial weights. Furthermore, each task in
the mini-batch is trained independently, and within a batch, each task starts with the same initial weights.

Figure 24.4: illustration of MAML training loop

For the previous figure 24.4, we can see that MAML trains 2 different loop. Remember that our
training data points are different specific tasks. Therefore our ‘inner loop’ trains on task-specific
labeled training data while the ‘outer loop’ trains on the different tasks.

Why do we need a differentiable loss function for MAML?

If we consider the block from the previous figure 24.4 where we train k-steps of SGD, the parameter
θt+1 = θt + ηinner(−∆L(θt)) is something that looks like an RNN because we are using k steps of SGD
(See figure 24.7). Therefore we need the loss to be differentiable so that the gradient from the held out set
can be passed back and used to update the initial weights.

It is important to differentiate between the two learning rates ηouter and ηinner, which correspond
to the two training loops found in MAML. We can see that ηouter is used in the outer training loop,
which tries to find a good initialization of the network and updates the model’s starting parameters
at the end of each mini-batch. ηinner is used in the inner loop, which updates the model for k steps
on each mini-batch task before the gradient is calculated to update the initial parameters.

Lecture 24: Meta-Learning 24-4

Figure 24.5: the unraveled inner loop resembles an RNN structure

1.4 What are the main challenges of MAML?

Exploding gradient during training: as k (the number of inner steps) increases, the network gets deeper,
so exploding gradients become a problem.

Memory: large values of k require storing all the intermediate activations for back-propagation, and memory
issues arise as a result.

In order to avoid these challenges, we can only used a limited k for our training tasks. Therefore at
training time, k will small compared to the number of steps we will take to fine tune the model at
test time.

Design choice:
If we are using randomly initialized task specific heads, when we resample a previously seen task, we
can either use randomly initialize a new task specific head each time, or store and reuse the previously
trained task specific head.

• the latter technique can be useful because the model will not be close to seeing all the data
points in a given task within k inner loop steps.

• This can also be useful because the randomly initialized task head will not perform well at early
iterations, and therefore will not be effective at correctly updating the model early on.

1.5 Step Back: Why does this work?

The first question to answer is: What are we learning?

• We are learning ’good features’ for the deep network. Conventionally, we think of a deep neural network
as an embedding that turns our input into a features. In this case the features are the outputs of the
model that we are fed into the task specific head in order to get our predictions.

• We can also think of features as derivative features (tangent view). In this case, we consider the
outputs of each layer of our deep network as features too. Therefore, when fine-tuning, we want these
derivative features to let our model match the task quickly.

• Few shot fine tuning succeeds when the derivative features appropriately capture the task we’re in-
terested in. Because we are seriously overparameterized in few shot learning, we need the principal
features of the tangent view do the work of capturing the task.

Lecture 24: Meta-Learning 24-5

2 . Meta Learning Alternatives

Alternative options to MAML:

In practice, there are methods other than the MAML procedure described above that can be used for few
shot learning. One option is to train the model on the union of all tasks. This means to simply run the
standard supervised learning on a dataset that contains all data points from all the tasks, and train multiple
task heads for each task at the same time. This alternative baseline method can do as well or better than
MAML. One way to reason about why this works is that this is equivalent to MAML with k set to 0, or
with the inner learning rate set to 0.

Figure 24.6: Task specific heads

Another alternative is to run MAML with a negative inner learning rate. This effectively makes the inner
loop amplify the what’s wrong in the model, and causes gradient descent in the outer loop to focus on parts
of the model that are more wrong in the outer loop.

ANIL/Meta Opt Net/R2D2 approach

Motivation: The inner task head during training isn’t very good when just initialized, so gradients aren’t as
helpful at improving the deep network as we might like.

Main idea: let’s do a two phase approach

1. Freeze the “feature extractor network” and just optimize the linear task head.This is typically a convex
problem with a closed form solution.

2. Now differentiate with respect to the parameters inside feature extractor.

https://arxiv.org/pdf/1909.09157.pdf
https://arxiv.org/pdf/1904.03758.pdf
https://openreview.net/pdf?id=HyxnZh0ct7

Lecture 24: Meta-Learning 24-6

Figure 24.7: MAML vs ANIL Source

REPTILE - simpler than MAML

The inner loop of REPTILE is the same as MAML: take update from our initial parameters for k steps. But
in the outer loop, don’t take the derivative and just update parameters in the direction of the final weights
from the inner loop.

https://arxiv.org/pdf/1909.09157.pdf
https://arxiv.org/pdf/1803.02999.pdf

CS 182/282A Deep Neural Networks Fall 2022

Lecture 25: 11/17/22
Lecturer: Anant Sahai Scribe: Liam Tan

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

25.1 Generative Tasks/Approaches

We will consider generation tasks, which come from the idea that if we can truly understand the underlying
regularities of some data, the model should be able to generate a new unseen example of the data.

Figure 25.1: Basic Generation Model Framework

Take the system above. We have a learned generation system that takes in no inputs. Say it has learned to
generate cats. When the model is called upon, we want it to generate a new cat. How can we ensure that
a fresh image is generated each time, rather than a memorized image? We would like to have this system
generate a different example each time. We do not want this to act as a deterministic circuit, one that cannot
generate different things.

Thus, we will feed some sort of randomness to our system in order to ensure an identity map is not learned.

25-1

Lecture 25: 11/17/22 25-2

Figure 25.2: Generation Model Framework with Randomness

Given some randomness, we can generate new examples each time. Assume our learned system can generate
fresh cat images each time it is run. What if we want to generate images of dogs, or images of planes?

Simple generation is not as useful as being able to control that generation. We turn to conditional generation.

Figure 25.3: Conditional Generation Framework

Each time we run our generational model, we provide it some context (e.g tell the model to generate cats).
Out comes a random sample that is correct in context. Say we tell it to generate an image of ice cream. It

Lecture 25: 11/17/22 25-3

will create a new image of ice cream.

Examples:

We give it an image of an object. The generational model outputs images of randomly sampled angles of
that object.

Context can be some text. For example, we can feed it a label of an image. If we tell it to generate “cats
playing poker” it will do so.

Questions:

• Why do we care about this? Isn’t this just some novelty or a party trick?
→ There is a grand tradition of engineering and that is putting people out of work when machines
can perform the task at hand
→ People are hired to construct 3D models for movies and video games and this is quite a laborious
task. If generational models can do this, these designers are no longer needed.

Generational models can aid in tasks where there is large amounts of human labor needed to create
something.
→ Stock image generation. Photographers spend countless hours taking photos of simple objects for
stock photos to be used in advertisements and such.

With the rise of advanced generational models, photographers no longer need to spend that time
taking and editing photos for that purpose.

• How can this be used for machine learning itself?
We can use GANs for data augmentation.

→ We can use generational models to “create” more training data. These generated examples are
viewed as a kind of data augmentation.

They have learned a lot of regularity that you can then use to feed into your model.
→ Suppose we have very sensitive data that we do not want the model to memorize. We can use
generational models for this.

Figure 25.4: Data Sanitization/Privacy with Generational Models

Lecture 25: 11/17/22 25-4

We have a machine learning problem that requires us to learn from sensitive data. How can we make sure
that our model does not memorize that data while still capturing the important underlying patterns within
it? We can pass in our sensitive data into a generative model to create new data that can be passed into our
machine learning model. If it is a good generative model and did not simply memorize things, we hope it
does not output too much sensitive information. Thus we never have to give the sensitive data to someone
that we may not trust.

25.2 Exploring and Designing Generational Models

25.2.1 Notes on Generation

Generation is a task unlike any previous task we’ve seen. It is very different than classification or regression.
Currently, we’ve seen autocomplete for text generation and it can take a look at the previous word and try
to guess the next one. More advanced autocompletes can take a look at all your words so far and try to
predict the next words. Very advanced autcompletes can look at all the words so far and try to predict the
next sentence. This is even being explored to see how these models can generate code. They take a look at
what you are typing and suggest changes based on what it thinks you are trying to do. Given this rise in
ability, researchers really want to understand generation tasks.

Generational Models is a phrase often used to capture the models that do the generation tasks. However,
we must make the distinction between “model” and “task”. Tasks refer to the different objective a system
would like to achieve. This refers to regression, classification, and generation. There are a large scope of
architectures that can do each task, so therefore when we refer to generation, we discuss the task, not the
specific architecture that can do that task. For instance, transformers are useful in classification, as well as
text generation(GPT). Generation is a task. The specific architectures that do these tasks are their own
concepts.

Lecture 25: 11/17/22 25-5

25.2.2 Example with GPT

Figure 25.5: GPT for next token prediction

We use the GPT model for sentence generation. We provide a prefix text, which is the context in this
scenario.

The prefix text will be accessed through the attention tables in each layer. As we pass input through the
transformer stack, we observe a list of scores as output.

How can we use these scores to generate the next output?

We can take a softmax of all scores and according to this probability distribution, generate a sample for the
next input. This sampling is the randomness in generation that allows us to create fresh examples each time.

Lecture 25: 11/17/22 25-6

Aside

• How do we actually sample from a discrete distribution?
→ A computer’s random number generator will allow us to sample from Unif [0, 1], for instance. How
can we use this to sample from a given discrete distribution?

Item Probability CDF

1 p1 0
2 p2 p1
3 p3 p1 + p2
4 p4 p1 + p2 + p3
...

Figure 25.6: Sampling from a discrete distribution

→ Let U be a random variable with distribution Unif [0, 1]. Sample from U and look at what interval
the realized value is in. Pick that item.

• How do we sample from a continuous distribution?

→ The main part we can take away from the discrete example is the CDF. Let’s devise a strategy
that utilizes the CDF.

Let FX(x) be the CDF. FX(x) = P (X ≤ x)

P (X ≤ x) =
∫ x

−∞ pX(x)dx

Sample U from Unif [0, 1]. Solve P (X ≤ x) = u for x. F (x) = u =⇒ x = F−1(u)

Note that the CDF is monotonically increasing.

Lecture 25: 11/17/22 25-7

Aside Cont.

• How do we sample from a multidimensional X ∈ Rd with density fX(x)?
→ When we can do something for one dimension and want to try it for multiple dimensions, the first
thing we must ask ourselves is “How can I turn this problem into a one dimensional problem?

I know how to solve that, so if I can turn this into a one dimensional problem, I can solve this too”.
We can turn this into a repetition of one dimensional problems. We think, “maybe I can somehow
factor the pdf into d different things”.

We can factor the pdf into a product of conditional probabilities. fX(x⃗) = fX1
(x⃗[1])∗fX2|X1

(x⃗[2]|x⃗[1])∗
fX3|X1,X2

(x⃗[3]|x⃗[2], x⃗[1]) ∗ ...

Start with u⃗ from i.i.d Unif [0, 1] d times. Use u⃗[1] to get x⃗[1] leveraging the marginal CDF FX1(x⃗[1]).
Use u⃗[2] and x⃗[1] to find x⃗[2], leveraging the conditional CDF FX2|X1

(x⃗[2]|x⃗[1]). Repeat to generate
all d terms.

The conditional generation, where we use the previous term to generate the next term is the Autore-
gressive generation used in GPT.

• How do we sample from any distribution when we are only provided a standard normal distribution?

Φ(x) is the CDF of the Gaussian distribution.

→ Sample n from the standard normal N ∼ Normal(0, 1). Φ(n) = u. Φ(N) ∼ Unif(0, 1). This shows
that if we have any continuous distribution, we can sample from any other continuous distribution.
We take any arbitrary distribution and by applying the CDF, we can get a sample from a uniform
distribution from 0 to 1. Now that we have a uniform distribution, we can sample any distribution
we want with the methods from above. Any continuous function can simulate any discrete or mixed
distribution.

In general, X is a random variable with some arbitrary continuous distribution.

Sample from X to realize the value x. Apply the CDF to x(FX(x) = u), and we now get a value
u from 0 to 1. I claim that u is sampled uniformly from 0 to 1. Try to think about why this is
true. Suppose I want to sample from a distribution with pdf fY (y). Take P (Y ≤ y) = u. Thus
FY (y) = u =⇒ y = F−1

Y (u). y is the sample from our desired distribution.

• How can we use a discrete distribution to sample from a continuous distribution in spirit? We can also
use more than just the discrete distribution.
→ We sample from the discrete distribution to decide which interval we are in. Then we use a uniform
distribution to decide where in the interval we are.

• What are the interesting properties of the normal distribution?
→ If we add up many distributions, in limit the distribution becomes normal. This is the central limit
theorem. In addition, adding up two independent gaussian distributions results in another gaussian
distribution.

Say we want to sample images the same way GPT does. We want to use an autoregressive approach to
mask out all future parts of the image and generate the image that way. Like GPT, we must do this in a
one-by-one approach. This can either be one pixel at a time or one patch at a time.

The two main things we need in an autoregressive generation is randomness and an ordering of conditioning.
The randomness comes from sampling our discrete distributions and the number of random variables is the

Lecture 25: 11/17/22 25-8

dimensionality of samples to generate. The ordering is used to compute the marginal distributions/CDF.

What is the main problem? With GPT next word prediction, we have some sort of ordering in which
the words were passed into the transformer model, but with images, it is unclear as to how order the
pixels/patches.

In comes raster scan ordering.

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 X

Figure 25.7: Raster Scan Ordering for Pixel Prediction

The pixels are ordered left to right top to bottom in raster scan ordering. Now we have an ordering and can
train like GPT with a transformer model. This tends to work ok and is not bad. There are ways to train
this with transformer models and even convnets. We can also do a similar approach patch by patch.

This raster scan approach is quite unintuitive because it does not capture the true topology of an image.
Images are not exactly sequence data. This approach is not an intuitive method that comes from an idea of
how images are structured. However, we use this because it tends to work somewhat.

Convnets and in turn weight sharing can also be utilized here but we must be careful about how to define
the topology. What is near and what is far? In a convnet, the pixel right under the current pixel is classified
as near. In raster scan, pixel 1 and 10 in figure 25.7 are 9 pixels away, which is quite far. Thus we need to
include some sort of 2 dimensional positional encoding to encapsulate the properties of images.

With Convnets, we must think about how to bake in the inductive bias in the structure of the convolution.
We have gradients and we need to mask out the gradients coming from the future data.

This method of masking and generating is not terrible, and there is some nice conditioning with the gener-
ation. The transformer allows context text with cross attention.

Images are large, and can often be millions of pixels. With the quadratic time complexity of attention, this is
a problem. This style of generation is completely sequential and cannot be parallelized. Even with patching
this method is considered to be quite slow.

25.2.3 Two Naive Approaches

25.2.3.1 Naive Approach #1

Due to the transformer approach being quite compute heavy, we look towards solutions that are faster.

Lecture 25: 11/17/22 25-9

Figure 25.8: Utilizing an Autoencoder for Image Generation

We attempt to only use an autoencoder for image generation. We first train this autoencoder as a standard
one. If it is a good autencoder, X and X̂ should be pretty similar.

We then take only the decoder side and feed in a random vector, hoping that it will generate a fresh image.
This approach has a very fast runtime. However, the decoder outputs garbage. It turns out that there is
still some structure in the bottleneck and that not all vectors in the bottleneck correspond to a real image
when passed through the decoder.

Thus, we need to try to learn this structure, and therefore pass in gradients that guide us to learn that
structure.

25.2.3.2 Naive Approach #2

Let’s try using a classifier to help generate an image.

Lecture 25: 11/17/22 25-10

Figure 25.9: Utilizing Classifier for Image Generation

We start with random noise and pass that in. In each iteration, we want to make our image more catlike.
Thus, we will do gradient ascent to make our score for the classification of a cat as large as possible

Xt = Xt−1 + η(∆Scorecat(Xt−1)).

Thus we try to maximize the cat score and therefore we try to make our image look more like a cat each
iteration. Every iteration we change our input image to make it have a higher cat score.

Suprisingly, our image output at the end of training looks like noise. We think, “Hrm, maybe we’ve ended
up at a local minima and got unlucky”. However, when we take a look at the classification scores/softmax
scores, we see that the image is confidently classified as a cat! What happened here? “Hrm, perhaps it is
because we started with random noise, which is so far from a real image that we could never possibly start
with that image and get a real life image”. Thus, we decide to pass in real images, say a picture of a table.
We think, “maybe if we start with a real image like a table, the classifier can sort of work with the structure
and go from there. We expect some modifications to the image and maybe a cat will appear on the table”.

What was even more surprising was that after training this, the resultant Xopt looked like X and the scores
said that this was a cat now! The image was somehow able to fool the classifier. This is called an adversarial
example.

25.2.3.3 Generative Adversarial Networks

What if we combined these two approaches to train a classifier and a generator together during training?

Our generator would generate images, and our classifier would detect if the image was generated or if it was
real. The classifier is now called the discriminator, because its job is to discriminate between real and fake
images. The generator’s job is to try to fool the discriminator into believing that the generated image is
real. The loss will backpropagate and help train both parts of the model at the same time.

Lecture 25: 11/17/22 25-11

Figure 25.10: Basic GAN model

GANs are notoriously hard to train because they are so finicky and delicate. There has to be just the right
alignment and balance for them to train well.

A common issue is called mode collapse. This is when a generator finds a decent output and continues to
just produce that output. The discriminator soon learns to always reject that output, even if it could be
real. A cat and mouse scenario happens and the generator is limited to producing a small subset of possible
outputs. The next lecture goes into more detail about this.

See here for a visualization of GAN training: GAN Simulation

https://poloclub.github.io/ganlab/

Lecture 25: 11/17/22 25-12

Figure 25.11: GAN Simulation

Live GAN training and even mode collapse can be observed.

25.3 References

References

[1] Minsuk Kahng, Nikhil Thorat, Polo Chau, Fernanda Viégas, Martin Wattenber. GAN Lab,
“Play with Generative Adversarial Networks (GANs) in your browser!” In: (2019) DOI
https://poloclub.github.io/ganlab/

https://poloclub.github.io/ganlab/

CS 282A: Deep Neural Network Fall 2022

Lecture 26: November 22
Lecturer: Anant Sahai Scribes: Zheyu Lu, Hyungki Im

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

26.1 Introduction

Generative models have not been around for a long time, but we have already seen waves of advances in this
field, such as autoregressive (AR) models, generative adversarial network (GAN), and, more recently, the
diffusion models. In this and the subsequent lectures, we will cover these frameworks with both high-level
ideas and technical details.

In practice, we are usually interested in generating big objects, in which case we count on the fact that there
is some kind of structure that is shared across the object. After all, what makes deep learning work is the
idea of weight sharing, where something is replicated across different places in the objects of interest.

In the last lecture, we talked about different approaches for generation and one of them is the AR approach
which takes the GPT style. Basically, it treats the object of interest as a sequence and samples one entry
at a time conditioned on “past” information. Sampling consumes randomness, i.e., randomness gets used
every time for the generation of samples, and this is why we do not get the same result over and over again.

26.2 GAN Approach

26.2.1 GAN Architecture

Basically, the idea behind GAN approach is to leverage the fact that maybe we can tell real from fake
and use this to help us generate real things. More concretely speaking, GAN approach uses a trained
discriminator that can tell real examples of X from fake ones to train a generator that can produce realistic
fakes. Figure 26.1 shows the GAN architecture and the architecture of the generator, and the discriminator
that is used in GAN. The randomness comes into the generator as input and passes through a deep network
structure, generating an example imageX. The deep network used in the generator can contain any inductive
biases that may help generate X. The discriminator takes this X (either real or fake) and classifies whether
the X is real or fake. One of the advantages of being the discriminator being a deep architecture is that
it actually learns the key discrimination between real and fake samples and tells this to the generator by
backpropagation.

The core idea of the GAN approach is that the generator and the discriminator are trained together. However,
it is very challenging to train the generator and the discriminator together, so we can split the training process
into two steps. We discuss this strategy in the following two sections.

26-1

26-2 Lecture 26: November 22

Figure 26.1: GAN Architecture

26.2.2 Step I: Train a Discriminator Given a Frozen Generator

In this step, we train the discriminator given a fixed generator. We can think of this as a classic binary
classification problem where there are two categories: “real” and “fake”. The frozen generator will generate
some fake samples and we mix these fake samples with real samples and use these to train the discriminator.

26.2.3 Step II: Train a Generator Given a Frozen Discriminator

In this case, we can train the generator by inputting random samples (such as sampling from gaussian
distribution) and obtain a “real” score or a “fake” score from the discriminator and take SGD steps. If
the output of the discriminator is a “real” score, we should maximize it; otherwise, we should minimize it.
Figure 26.2 illustrates this step.

Q. Why are we taking the gradient for the input, although it is random? The generator is not
tuning to create a specific example that can fool the discriminator. Indeed, it tries to generate a general
output that the discriminator can’t easily distinguish from the real samples. That is the main reason why we
are using the random input only once and throwing it away. This is different from the training procedure,
which uses the same dataset again and again.

Now we can iterate between step I and step II to construct a generative model, and figure 26.3 illustrates a
simplified version of this training process with a linear classifier as a discriminator.

However, there are several things that can go wrong in this setting. One possible flaw is if the discriminator
is too good, then no matter what the generator does locally to its parameter, the discriminator would still say
it is still too fake. Then this results in tiny gradients, which are not desirable. Also, if the target distribution
is spread out instead of sticking together, it is highly possible for our generator to be oscillating between
those target distributions. This is called the problem of mode collapse.

Lecture 26: November 22 26-3

Figure 26.2: Train Generator with Frozen Discriminator

Figure 26.3: Iterating Step I and II: The black circle represents the distribution of real samples while the
yellow circle represents the distribution of fake samples generated by the generator. We use a linear classifier
as a discriminator and represented as a line in this figure.

26.2.4 Mode Collapse

GAN training is notoriously challenging to do because of the problem called mode collapse. This happens
when the generator lacks sufficient diversity. Let’s take a look at Figure 26.4.

As explained in the figure, the black dots represent the distribution of “real” data, and the orange cluster
represents the distribution of the fake samples that are generated by the generator at some point. Our
ultimate goal is to create orange clusters over all the real samples (black dots) in the figure. However, under
most of the approaches, the generator will end up clustering at a single point of the real sample cluster just
as the left figure in Figure 26.4. If this happens, the discriminator will then classify all the samples in the
orange area (including the real samples) as fake. So, the generator will shift the orange area (fake samples)
to other real sample clusters (In the Figure 26.4, we moved to counter clockwise.) Again, the discriminator
will be trained to classify all the samples in the orange area at the right figure as fake samples, and this will
continue on and on. This phenomenon is called mode collapse, and the reason for this naming is that some

26-4 Lecture 26: November 22

Figure 26.4: Black dots represent the distribution of real samples. The orange cluster represents the distri-
bution of fake samples that are generated by the generator.

modes are not covered by the generator. Mode collapse is deeply rooted in this kind of adversarial learning
setting, and this is an active area of research where many people are trying to come up with some methods
to solve this issue.

26.3 Diffusion Approach

One of the interesting things about the revolution in deep learning is that sometimes people suddenly realize
some specific math techniques that have existed for quite a long time are very important. In the context of
diffusion models, these techniques are ordinary differential equations, stochastic differential equations, and
thinking about things in continuous time. Before we formally dive into the details of diffusion models, in
the following sections, we give two immature ideas that do not work in practice but serve as a good starting
point.

26.3.1 First Attempt

Basically speaking, the idea is to use a denoising autoencoder to do generation as shown in Figure 26.5. The
idea behind this is that denoising autoencoder has a true example X with noise, compresses X into the latent
space and attempts to reconstruct X. However, this simple scheme will not work in practice because if you
just add a huge noise to X, the input is dominated by the huge noise and effectively the whole framework
becomes reconstructing X from pure noise where the shift is too large.

26.3.2 Second Attempt

Basically speaking, the idea is to do many stages of denoising, i.e., add noise in stages rather than add a
single stage of noise in the above first attempt. In this case, as is shown in Figure 26.6, we have a bunch of
denoising autoencoders and correspondingly a bunch of targets to reconstruct. We have different noise at
different stages.

Lecture 26: November 22 26-5

Figure 26.5: Schematics of the first idea where we have a single denoising autoencoder. We add noise to the
input real value X and have one encoder with parameters θE , one decoder with parameters θD, and a loss
layer trying to reconstruct X from the noisy data.

Figure 26.6: Schematics of the second idea where we have multiple denoising autoencoders. At each stage,
we add noise Ni ∼ N(0, 1) to the previous output Xi−1 and have one encoder Ei and one decoder Di trying
to reconstruct the previous output Xi−1 from the noisy data Xi.

Thinking about this abstractly is quite hard, so let us think of this using a concrete example on a two-
dimensional plane as shown in Figure 26.7 where the true data X0 are on a line. For the first denoising
autoencoder block, we want to reconstruct X0 from X1 which means effectively the network will try to push
points near the line onto the line, although we do not know what will happen for far away outliers since they
may not exist in the training set. For the second denoising autoencoder block, it will also push X2 towards
the line on average although the points may be slightly far away from the line in some places. In general, in
each of the denoising autoencoder block, the points will be pushed in the direction towards the line.

Notice that although we add noise with zero mean to X0 and the resulting Xn has the same mean as X0,
the variance of Xn keeps growing. This is essentially the result of Brownian motion where ⟨x2

t ⟩ ∼ t. And
because the variance is growing over time, we want to standardize it which leads us to a modified design as
shown in Figure 26.8 where at each step, we have

Xi+1 =
√
1− βiXi +

√
βiNi

E[Xi+1] =
√
1− βiE[Xi] +

√
βiE[Ni] = 0

Var[Xi+1] = (1− βi)Var[Xi] + βiVar[Ni] = 1

(26.1)

Notice that in this design, the real value X0 will keep shrinking towards 0 over time by a factor of∏n
i=1

√
1− βi. As a result, we transfer whatever we have initially (X0) to basically just noise at the end.

26-6 Lecture 26: November 22

Also, it is worth noting here that although at each step we keep mean to be 0 and variance to be 1, the
distribution is changing over time and we are not getting back to the start. Note that mean and variance
alone could not uniquely define a distribution! This could also be illustrated by a two-dimensional example
as shown in Figure 26.9. Initially, we have points staying on a circle, as we move forward by adding stages
of noises, the circle becomes a cloud of points and the larger β is, the faster the blurring process is. As a
result of the attenuation, the circle finally shrinks to a point and noises dominate everything.

Additionally, it is worth noting that standardization is just for controlling things from exploding and has
nothing to do with the nature of the directionality of pushing towards the real value. For example, real images
are not truly random and nearby pixels have closer values, but the noise will move them in totally different
directions. Therefore, for a real image, any kind of divergences may be due to noise while commonalities are
more likely due to real common features. Notice that even with these attenuation, the job of each denoising
autoencoder block is still very clear, i.e., remove the noise and reconstruct the input.

However, this approach actually still does not work in practice. We will see in the next lecture that how we
could further modify the architecture and improve the training procedure to make it work.

26.4 What we wish this lecture also had to make things clearer?

1. It would be better if we provide some reasons why training the generator and the discriminator sepa-
rately would not be efficient in an organized way.

2. It would be better to introduce some technical concepts to avoid mode collapse.

3. It would be better to introduce some knowledge of stochastic calculus and some technical details of
the mathematical description about diffusion.

4. It would be better to add more technical details about the examples used in the lecture to illustrate
the ideas behind diffusion models.

5. It would be better to explain more about why the two basic attempts do not work in practice.

Lecture 26: November 22 26-7

Figure 26.7: A two-dimensional example showing the effect of adding noise at different stages. X0 are
600 points (x0, y0) on a line y0 = 0.5x0 + 5 ranging from −10 to 10. X1 are the points (x1, y1) satisfying

x1 = x0+n
(1)
x and y1 = y0+n

(1)
y where n

(1)
x ∼ N(0, 1) and n

(1)
y ∼ N(0, 1) are standard normal noise. X2 are

the points (x2, y2) satisfying x2 = x1 + n
(2)
x and y2 = y1 + n

(2)
y where n

(2)
x ∼ N(0, 1) and n

(2)
y ∼ N(0, 1) are

standard normal noise. In this example, we have Var(x0) = 33.44,Var(y0) = 8.36, Var(x1) = 34.71,Var(y1) =
8.95, Var(x2) = 35.24,Var(y2) = 10.22. Notice that X2 has larger variance than X1 and X1 has larger
variance than X0.

26-8 Lecture 26: November 22

Figure 26.8: Schematics of the attenuation mechanism as a modification to each denosing autoencoder block
in the second idea. For each stage, we standardize our result to make it have mean 0 and variance 1, i.e.,
Xi+1 =

√
1− βiXi +

√
βiNi where Ni ∼ N(0, 1), E[Xi+1] = 0, and Var[Xi+1] = 1.

Figure 26.9: A two-dimensional example showing the effect of attenuation. X0 are the points (x0, y0) on a
circle centered at origin with radius

√
2. X1 are the points (x1, y1) satisfying x1 =

√
1− βx0 +

√
βnx and

y1 =
√
1− βy0 +

√
βny where nx ∼ N(0, 1) and ny ∼ N(0, 1) are standard normal noise. On the left, we

have β = 0.99. On the right, we have β = 0.01.

CS182 - Scribe Notes 11/29

Zipeng Lin, Numi Sveinsson

November 29th 2022

1 Introduction

Today the topic of the lecture are VAEs (variational autoencoders).

2 Recall from last time

Two ideas that don’t quite work:

1. Plain autoencoder: we have an input Xi sent into the encoder and decoder to get X̂i at training time. At
testing time, we just use the encoder to generate the model. (bottleneck) The reason this might not work is
because we need to decide from which distribution to sample the space ~z and we don’t know that distribution.

Figure 1: Autoencoder

The distribution we input would be different from the output.

2. Plain repeated denoising generation. Multiply the data with
√
Bi, and then add a noise that is N(0, 1−Bi).

To make the sequence long enough, we will get it would look Gaussian if T is large. Then we train a denoiser
network that takes samples from this space XT .
Why does this fail: the samples from the space are very blurry after running through the denoisers. Each of
the trained denoisers go a little outside the correct distribution and together it ends up being an accumulative
error.

1

Figure 2: Denoise generation. The bottom row represents learned denoisers.

The distribution would be blurry too.

Now let’s talk about how we fix the first approach above.

3 VAE: Variational Autoencoders

Intuition: decoder is just for training, encoder is for dimension reduction.
Question: from a hacking point of view, how to know the unknown distribution of ẑ?
Solution: force ẑ to have a particular known distribution.

3 Ingredients:

1. Make the input to the “decoder“ actually random during training.

2. Add a loss term on the distribution of ẑ. Make it look like what we want.

3. Parameterize so that we can do SGD.

For example, X will be sent to an encoder to a distribution of some kind and sent to loss and output a loss.
Then, the sample from the distribution will be sent to a decoder and get X̂i, input the xi to calculate loss and
output R.

2

Figure 3: VAE

Questions: if we just take the input data, there are some amount of training data, we will get a collection of
data point. If we treat the empirical data points as a distribution, we only get the reconstruction. We want to
understand the distribution being generated. We can perturb those points at testing time. We want to have more
diversity to emerge.

3.1 Desired Distribution

Desiderata for distribution:

1. Continuous

2. Easy to sample

3. Easy to compute the loss on distributions.

There are two candidates that we usually use: uniform distribution and Gaussian distribution. We choose nor-
mal distribution N(~0, I).

Now we can just have the output from the encoder being a mean and covariance of that normal distribution.
Now we have parameterized the distribution and can use SGD to change these variables.

Aside: we have the output being the squared root of the covariance to ensure positive definiteness later.

Sampling: is done by sampling a normal distribution ε̂ , multiplying that with the covariance and adding to
the mean.

3.2 Loss on Distribution

What loss should we use? How do we measure the distance between two probability distributions? There are lots
of choices.

Choose KL divergence KL(Q | P) “Relative entropy from P to Q“, we have

KL(Q | P) =

∫
Q(z) ln

Q(z)

P (z)
dz = EZ∼Q[ln

Q(z)

P (z)
] ≥ 0

this is nonnegative by Jensen’s Inequality (proved in discussion) since ln is concave.

More importantly than being nonnegative, if two distributions are similar then it would be zero. It is also asym-
metric. It means “it does not like it when Q puts lots of probabilities where P does not“: this means if P (z)� Q(z)

3

the value would be really big. Follow the aside example to experience more about KL being asymmetric.

Aside: If we have iid draws from P , probability that it looks like they are drawn from Q is around e−nD(Q|P).
If Q is a coin with only heads and P is half heads half tails, it is not going to happen. On the other hand, it might
happen but not likely.

In particular, the KL divergence, KL(Q | N(0, Ik)) = 1/2(Tr(ΣQ) + ~µQ
ᵀ ~µQ − k − log det ΣQ). It is important

because PyTorch can take derivative for us. The gradient could flow back to the mean and covariance to update
them. We try to regularize by imposing a loss term saying that please make the KL loss be normal.

Figure 4: VAE - Enforcing Normal Distribution with KL-Divergence Loss

Question: can we do SGD? Does the loss affect the weights in the encoder? The spirit of SGD says we look
at the entire distribution, while SGD says we take a sample and do it. We have xi is random from training set.
Gradient would hit the decoder, and would go towards µ̂ and Σ1/2 because it would go through the multiplication.
We can inject noise to the term D and add regularization term to make the system more robust.

3.3 Training

Challenges:

1. KL loss ends up dominating, we disconnect input. In this case the decoder carries no information, so it
collapses. It would set “blurry average“ outputs to D.

2. Alternatively, if the reconstruction loss dominates too much then we will get bad samples when we use it.

We need to have a balance between them.

3.4 Tricks

• Often reconstruction loss is allowed to dominate early in training and then distribution loss is used afterwards
to tweak the sampling space without impacting reconstruction performance.

• During inference: the sample from ~z is run through decoder but then rerun through the encoder to refine the
sample. That output is then used for generation. We only do this once or twice to prevent it from becoming
’mush’.

4

4 Diffusion Models with Denoising

Suppose we want xt based on x0

Xt ∼ N(
√
αtX0, (1− αt)I)

those are easy to understand and also for any s

Xt|Xs, s < t

What we want is to go backward for Xt−1|Xt, which is hard (this is intractable misbehavior).

Key idea 1: We approximate Xt−1|Xt with N(µθ(xt, t),Σθ(xt, t)). If we make those increments small enough,
maybe the reverse thing might be the same. We want to do the same thing that we did VAE, we want to have a
loss at the level of distribution that has what we want.

VAE-style idea: add a loss KL(. . . | . . .) on this distribution.
We want to target something on the reverse path.

Key idea 2: Xt−1|Xt, X0 is intractable by joint normality, then we will get a normal distribution with its
means and variance. We can train the denoising autoencoder with using the same kind of regularization. Every
time we do this we inject some noise. The added noise is what gives robustness.

Denoising is a form of feedback control.

5

	Recap. Basic Standard ML Doctrine
	Typical Supervised ML Setup

	Empirical Risk Minimization (ERM)-Optimization Perspective
	Hyper-parameters & Parameters
	Gradient Descent and SGD
	Intro. to Neural Nets via ReLU (Rectified Linear Unit) Nets
	What is a Neural Net (Differentiable Programming)?
	Two goals of the analog circuits
	Example of Neural Networks

	What we wish this lecture also had to make things clearer?
	Lecture 4 – Basic Principles Part II
	Regularization
	Explicit Regularization
	Data and Feature Augmentation
	Using Singular Value Decomposition to Simplify Regularization
	Implicit Regularization

	Trade-offs Between Qualitatively Different Sources of Error
	What are ``Features"?

	Momentum and Adaptive Gradient Descent Methods
	Momentum
	Adaptive (e.g. Adam) Methods

	Convolution neural networks
	What we wish this lecture also had to make things clearer?
	Agenda
	Locality
	Weight sharing
	Support hierarchy
	Structure summary
	Data Augmentation
	Standardization and Normalization
	Residual Nets and their advantages
	ConvNeXt
	Introducing ConvNeXt
	GeLU: Gaussian ReLU
	Depthwise Convolution
	Wrapping up ConvNeXt

	Dropout
	Dropout(basic)
	Stochastic Depth Regularization
	Other Methods Similar to Dropout that Have Been Explored

	Label Smoothing
	Before Label Smoothing: One Hot Encoding
	Label Smoothing

	Key ideas of the Convolutional Neural Networks (CNNs)
	Graph Neural Networks (GNNs) as the ``generalization'' of CNNs
	Basic GNN model
	Differences between CNNs and GNNs from a Neighbor Perspective

	Extension of key ideas of CNNs to GNNs
	Weight sharing
	Pooling
	What doesn't change?

	What if the graph topology is not fixed?
	A little intro to RNN
	Review for last lectures
	Filters
	Recurrent neural network
	Choice one: stick to the picture but make things wider/deeper
	Choice two: Use layers of simpler RNNs
	RNN challenges

	Background: Unsupervised Learning
	Utilizing Unlabeled Data
	Exploratory Data Analysis

	Rethinking Dimensionality Reduction by PCA
	Autoencoders
	Learning Problem Setup
	Non-Linearity and Autoencoder Approach

	Parameterizations
	Weight Sharing for A
	Partial Weight Sharing for A
	Using the Inductive Bias of Gradient Descent

	``Excorcising'' the Fear of Learning the Identity
	Use Data Augmentation: Denoising Autoencoder
	Masking/Inpainting: Kind of Data Augmentation

	What we wish this lecture also had to make things clearer?
	Introduction
	Classic Lloyd's Algorithm for k-means
	SGD Approach (First Attempt)
	Softmax Idea
	Goofy Alternative

	Transformer Models
	Key Idea 1
	Recall attention

	Key Idea 2

	Lecture 18 – Transformers
	Recap
	Differences between RNN and Transformer
	(Single-headed) Attention Block
	Parallels with CNN

	Multi-headed Attention
	Introduction
	Parallels with CNN

	Motivation of the Transformer Architecture
	Masking in Attention
	Cross Attention
	Summary

	Agenda
	Attention, ResNet Style Blocks with MLPs and LN
	Position Encoding

	Variant of Position Encoding
	Transformer Components
	Attention
	MLP
	Layer Normalization
	Query Standardization
	Data

	Word Embeddings
	Tokens
	Word2vec
	Creating a tractable version of the problem
	Interpreting the learned embeddings

	Pretrained Language Models
	Contextual representations
	Bidirectional Transformer Language Models
	Training BERT

	Fine-Tuning
	Using BERT
	Additional Tasks
	Using BERT for feature generation

	Surprising Results With GPT
	Continue Fine-tuning
	Feature Extraction
	Fine-tuning
	Prompt Engineering
	Prompt Tuning
	Note on Training

	Catastrophic Forgetting/Interference
	Solving Catastrophic Forgetting

	T5/BART
	What we wish was explained more in detail
	More Details on Prompt Tuning
	Meta-Learning
	Multi-task Learning

	Generative Tasks/Approaches
	Exploring and Designing Generational Models
	Notes on Generation
	Example with GPT
	Two Naive Approaches
	Naive Approach #1
	Naive Approach #2
	Generative Adversarial Networks

	References

