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1 Thursday, August 25th

1.1 Class Syllabus

1.1.1 Lectures

Lectures will be in-person, TuTh 2-4pm in North Gate 105. Lectures will be recorded.

Please do not come to lecture if you have COVID symptoms; watch the recording instead!

1.1.2 Course Staff and Communication

Here is the EE 120 course staff for this semester!

Babak Ayazifar: Professor (ayazifar@berkeley.edu, 517 Cory)

Naomi Sagan: Head TA

Drake Lin: TA

Neerja Aggarwal: TA

Yousef Helal: TA

FourierBot: Bot

All course communication will be through Ed and BCourses (we do not have a course website).

For emergency communication during exams, email ee120-fa22@lists.berkeley.edu with [EE 120] in
the subject header. This reaches all course staff.

For administrative concerns, email:

• Naomi (naomi.sagan@berkeley.edu)
• and/or Babak (ayazifar@berkeley.edu)

with [EE 120] in the subject header.

1.1.3 Exams

We will have one quiz and two midterms (no final). Exams will be online, non-proctored, open-
book, and open-note during class time. You are allowed to collaborate with others on EdStem.
Stay tuned for more information (including exam dates) in the main logistics post!
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1.1.4 Assignments

We will typically have one homework or lab (i.e., Jupyter notebook assignment) per week, except
exam weeks. There are approximately 6-8 total homeworks, and 5 labs. For homework, the lowest
two grades are dropped, and for lab, the lowest one is dropped.

Assignments will be released on Fridays and due the following Friday at 11:59pm. There will be a
grace period until Sunday at 11:59pm.

Homeworks will be self-graded, and self grades will be due a week after the homework is due. Labs
will be autograded, and some may have a self-graded component.

You will all be added to Gradescope shortly, by the time the first assignment is released.

1.1.5 Discussion and OH

Discussion Times: Friday 10-11am in Cory 521, 1-2pm in Wheeler 130, 2-3pm in Wheeler 224,
3-4pm in Wheeler 224. You can attend any section that isn’t oversubscribed.

The first discussion will be Friday, August 26.

OH times are TBD; more information will be posted next week. OH will be a combination of
in-person and hybrid.

We will have homework party Friday evening, 5-6pm.

OH and homework party start the week of August 29.

1.1.6 Course Materials

There is no official textbook or set of course notes for EE120. However, if you would like additional
information beyond what is covered in lectures, homeworks, and labs, you can look at these two
textbooks:

• Signals and Systems by Oppenheim and Willsky
• Signals and Systems by Hwei P. Hsu

To study, you should do old exams on https://tbp.berkeley.edu/courses/ee/120/.

13

https://tbp.berkeley.edu/courses/ee/120/


1.2 Overview

This class looks at 2 duality’s:

• Time ↔ Frequency
• Continuous Time (CT) and Discrete Time (DT)

– Real-valued CT Signal: x : R→ R
– Complex-valued DT Signal: x : Z→ C

The fundamental mathematical idea in this class is signals, and systems are relationships between
signals.

1.3 Signals

Signals are functions.
We can define signal x as a function/mapping between sets A and B:

x : A→ B
Name

Domain Co-Domain

For Discrete-Time (DT) Signals, A ⊆ Z and B ⊆ R or C.

For Continuous-Time (CT) Signals, A ⊆ R and B ⊆ R or C.

1.3.1 Example 1: DT Signal

x : function (signal in its entirety)

x(n) : value of the function x evaluated at sample n

Thus, we have

x(−2) =
√
5

x(0.5) = undefined

14



1.3.2 Example 2: CT Signal

1.3.3 Kronecker Delta (DT Impulse)

δ(n) =

{
1 if n = 0

0 otherwise

Thus, we can express any DT signal in terms of a linear combination of shifted impulses.

x(n) = 1 · δ(n− 1) + 2 · δ(n− 2) + 3 · δ(n− 3)

15



1.3.4 DT Unit-Step Function

u(n) =

{
0 if n < 0

1 if n ≥ 0

We can actually express u(n) in terms of shifted impulses (δ(n)’s):

u(n) = δ(n) + δ(n− 1) + δ(n− 2) + · · ·

=
∞∑

k=0

δ(n− k)

=

n∑

m=−∞
δ(m)

Note that we do not use i as an index variable since i =
√
−1.

Also, when we express δ(n) in terms of shifted u(n), we get the following:

δ(n) = u(n)− u(n− 1) =
u(n)− u(n− 1)

1

This is a discrete-time derivative (slope). Impulse is the derivative of the unit step. This
will still hold in CT.

1.4 Systems

Systems are also functions.

We can define system F as a function/mapping between signal spaces X and Y :

F : X → Y
Input Signal Space Output Signal Space

The systems we deal with in this class are Single-Input, Single-Output (SISO) systems.
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Note that the inputs and outputs to F are signals, i.e. functions. For example, F may map
x1(t) = cos(t) to y1(t) = sin(3t) where x1 ∈ X, y1 ∈ Y . Thus, we can think of the system F as a
mapping between sets of functions. Note that by definitions of functions, the entirety of the domain
must be covered.

If X = [R→ R] (i.e. space of real-valued CT signals) and Y = [R→ R], then F is a Continuous-
Time (CT) System.

If X = [Z → R] (i.e. space of real-valued DT signals) and Y = [Z → R], then F is a Discrete-
Time (DT) System.

1.4.1 Linearity

Suppose we have a system F : X → Y . We say that F is linear if for all x1, x2 ∈ X, the following
two properties hold:

Homogeneity/Scaling : F (αx1) = αF (x1)

Additivity : F (x1 + x2) = F (x1) + F (x2)

This is also known in physics as superposition.

1.4.2 Time Invariance

Next time!
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2 Tuesday, August 30th

2.1 Review: LTI (Linear Time-Invariant) Systems

2.1.1 Signals are functions

Continuous Time: x : R→ R or x : R→ C
Discrete Time: x : Z→ R or C

x ∈ X → H → y ∈ Y

where X is the input signal space and Y is the output signal space.

Formally, we say that y = H(x). Note that systems are simply mappings from functions to
functions.

2.1.2 Time Invariance

If x̂(t)
.
= x(t − T ) then ŷ(t)

.
= y(t − T ). In other words, the output must be offset at the same

relative amount as the input.

2.1.3 Easy Check for LTI: ZIZO

To make sure that linearity is ensured, zero should map to zero. Note that this alone is not enough
to prove linearity but it is necessary (e.g. y(t) = x2(t)).

2.1.4 DT-LTI General IO Derivation

δ(n) → H → h(n)

Time-Invariance:
δ(n− k) → H → h(n− k)

Scaling Property:
x(k)δ(n− k) → H → x(k)h(n− k)

Additivity:
∞∑

k=−∞
x(k)δ(n− k)

︸ ︷︷ ︸
x(n)

→ H →
∞∑

k=−∞
x(k)h(n− k)

︸ ︷︷ ︸
y(n)

18



The importance of LTI is that you essentially have invertibility, which allows us to uniquely describe
(i.e. characterize) a signal by its impulse response. Note that LTI systems can also be seen as
convolutions.

2.1.5 Commutativity of Convolution

y(n) = (x ⋆ h)(n) =
∞∑

k=−∞
x(k)h(n− k) =

−∞∑

ℓ=∞
x(n− ℓ)h(ℓ) = (h ⋆ x)(n)

2.1.6 Impulse Response of Cascade (Series) Interconnection

x(n) = δ(n) -> f(n) -> g(n) -> y(n) = (f ⋆ g)(n)

which, via commutativity of convolution, has the same impulse response as the following system:

x(n) = δ(n) -> g(n) -> f(n) -> y(n) = (g ⋆ f)(n)

2.2 Simple Moving Average

x(n) -> h(n) -> y(n) =
1

N

N−1∑

k=0

x(n− k) =
x(n) + · · ·+ x(n−N + 1)

N

Let us compute the impulse response of the system H. Letting x(n) = δ(n), we have

y(n) = h(n) =
δ(n) + δ(n− 1) + · · ·+ δ(n− (N − 1))

N
,

and we depict this signal below:

Figure 1: Special thanks to Jonathan Pei for this drawing
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3 Thursday, September 1st

3.1 Time Invariance

3.2 LTI Systems

3.3 Convolutions

3.4 Complex Exponentials

3.5 Euler’s Formula

20



<3

Lecture 3
,
9/1/2022

Time Invariance (TI)

Visualization of Time Invariance

✗ It)→ It → ylt) →
'

DT → ylt - T) A- system operator
} Must equalTarts Dishift by T time

✗(f)→ Dt → IN.=xH-t) →
'

H → yyt)
to hold

Basically , Time Invariance holds iff It & Dt are commutative

1-
F-✗ I

.

3- XH) ↑ R§ V=yHkRxA) 511-1=12×(1--7)
YA- -11=12×(1--1)

} ✓ Time Invariant

-

1-

F-✗ 2 . y^H1=Rlt)xCt-T)
F- ✗HI ↑ RAI } V-yltt-Rltxlty.lt-4=124--71×(1--7)

}✗

- Time Variant

Ex 3
.
Two - Pointer Moving Average

✗(n)→ H → yen)=×aH✗k-D2

• Linear? Icn)=✗✗,(n)+p××n) →
y^(n)=ÑM+Ñm) kxim-BxacnD-kx.ln-D-rsxacn.is)2

=
2

= ✗yilntpyaln) ✓

• Time Invariant? Icn)=✗Cn-N) →
YYnt-xhnltkcn-D-xcn-NI-xcn-i.nl

a 2 } ✓
Yln-N)=

✗In-Nltxln-N-1)

2
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Linear , time-Invariant (LH) systems
LTI

✗Cn) → It → ycn)

Claim: If I know the response of It to the input ✗Ink 81h7 the 7L ( i.e. the impulse response hintHAND)
then I know the output for any arbitrary input signal × .

↳ Proof /Explanation : We can express any input signal ✗Cn) as follows:D

✗ (n)=¥• ✗(m) Sln-m)
and thus any output signal yln) as follows (using LTI properties) :

ycn)=É xcm) hln-m) = (✗ ☆ h)(n) = ( h ☆ x)(n)
m=-D

↑

Convolutions are commutative

Cascading systems : we can interchange the order of LTI systems in a cascade (series)
interconnection

✗ → f Is g → y

✗ → g f → y

↳ y=x☆f☆g= ✗ ☆ g ☆ f , though r≠q

Convolutions

Def : (v ☆ a) In)=É vlnluln-k)=É vln-m) ulml
1<=-0 m=-D

Properties: • Commutative: V ☆ u=u☆v

• Identity Element : ✗☆ 8- = ✗
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1-

Complex Exponentials

✗Akeᵗ {
✗101=1

•xH1Éᵈ¥ˢ=xH)
iilt)Éᵈ¥¥= ✗ It)

We use the properties of complex exponentials to solve interesting problems :

Ex
.

✗Ake
#
= the instantaneous position of a particle onthe complex plane

aim

⇔
✗G)= /

•

✓
✗10)

x.lt/=ieit=ixCt)
>Re

Ilo)=i

Claim : the particle moves onthe unit circle at a constant speed counter-clockwise

↳Proof : ✗A)=eiᵗ= altltiblt) a:R→lR
,
b :R→R

ilt) = a. A)+ iblt)

iA)=ixH)= - bit)+iaH)

↳ { a.AK-bit
altt-b.lt)

↳ altlactk-bltlb.lt)

↳ 2altlciltl-2bltb.lt/=0
↳ It /a211-1+541-11=0
↳ aHtHb4t)=c⇒ VIER

•

•

.
Moves in circle of radius I

tilt) /=/ ixltlklxltlkl :
.
Moves at a constant speed at 1rad/see
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NIM
Euler's Formula

_

i xctteit
isint

- - - - - -

*;

i
eiᵗ= coslttisinltl VIER

•
↑ᵗ !
cost

1
,

> Re



4 Tuesday, September 6th

4.1 Euler’s & Inverse Euler’s

4.1.1 Euler’s Formula

eit = cos(t) + i sin(t)

but the frequency (i.e. speed) can be anything:

eiωt = cos(ωt) + i sin(ωt)

where ω has units of rad
sec . Note that f , on the other hand, has units of cycles

sec = Hz. Also note that

2π has units of rad
cycle , which is the ratio ω/f .

Phasor: a vector that rotates around the unit circle.

Thus, we can interpret ω > 0 =⇒ CCW movement, and ω < 0 =⇒ CW movement.

Question: given eiωt and e−iωt, can you get cos(ωt)?

Answer:

eiωt + e−iωt = 2 cos(ωt) =⇒ cos(ωt) =
eiωt + e−iωt

2

4.1.2 Even and Odd functions

Cosine is an even function:
cos(−t) = cos(t)

and Sine is an odd function:
sin(−t) = − sin(t)

4.1.3 Inverse Euler’s

Question: given eiωt and e−iωt, can you get sin(ωt)?

Answer:

eiωt − e−iωt = 2i sin(ωt) =⇒ sin(ωt) =
eiωt − e−iωt

2i
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4.2 Periodicity

You have probably seen periodicity before in simple harmonic motion (without dampening) in a
Physics class’ dynamics unit.

Here is a nice story otherwise:

This story of Romeo and Juliet is taken from a Cornell Professor.

Romeo proposes to Juliet and she rejects him. The rejection discourages him but later on she
decides to give him a chance. But being discouraged, he rejects her, discouraging her, but the
proposal now makes him interested. And so the cycle continues.

This is an example of cyclic behavior.

Let us now define CT Periodicity.

4.2.1 CT Periodicity

x : R 7→ {R ∪ C} is periodic if (∀t ∈ R), x(t+ T ) = x(t) (for some) ∃T > 0.

We say T is the fundamental period if T is the smallest possible value that satisfies the periodicity
relation.

Associated with the fundamental period is the fundamental frequency which is ω = 2π
T

rad
sec or

f = 1
T Hz.

If we have a constant continuous signal x(t) = C for some constant C, then the fundamental period
is undefined.

Question: Find the period of x(t) = cos
(
2π
5 t
)

Answer: x(t+ T ) = cos
(
2π
5 (t+ T )

)
= cos

(
2π
5 t+ 2π

5 T
)
= cos

(
2π
5 t
)

which implies 2π
5 T = 2πk =⇒ T = 5k for some k ∈ {1, 2, 3, . . .}.

min k = 1 =⇒ T = 5 sec.
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4.2.2 DT Periodicity

If N is the smallest integer such that x(n) = x(n + N), we call it the fundamental period of x.
Thus, the (fundamental) frequency is ω0 =

2π
N .

Example:

Question: Find the (fundamental) period of x(n) = C, ∀n ∈ Z?

Answer: Looking at the samples (i.e. dotplot — which is just C for all n), we can see that N = 1
is the fundamental period if the DT signal is constant with ω0 = 2π rad

sample .

Example:

Question: Find the fundamental period and frequency of x(n) = ein, ∀n ∈ Z?

Answer: This must hold (∀n ∈ Z),

ei(n+N) = eineiN = ein

for some N ∈ Z.

But N = 2πk ̸∈ Z.

Therefore the answer is not 2π as that is not an integer. Therefore the period is undefined.

We can see this graphically as we see that this jumps around the unit circle, never visiting the same
point again.

Example:

Question: Find the fundamental period and frequency of x(n) = ei
π
4
n, ∀n ∈ Z?

Answer: This must hold (∀n ∈ Z),

e
π
4
i(n+N) = e

π
4
ine

π
4
iN Want

= e
π
4
in

for some N ∈ Z.

which happens when e
π
4
iN = 1 =⇒ π

4N = 2πk =⇒ k = 1 =⇒ N = 8.

Therefore we have (fundamental) frequency ω0 =
2π
8 = π

4
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4.2.3 Necessary and Sufficient Conditions for DT Periodicity

Now we shall examine the necessary and Sufficient Conditions for eiωn to be periodic in n.

eiω(n+N) = eiωn

���eiωneiωN =���eiωn

eiωN = 1

Now, noting that ω must be a rational multiple of π, we get that:

ωN = 2πk =⇒ N =
2πk

ω

†
=

2π
l
mπ

k =
2m

l
k

†ω =
2π

N
k =⇒ l

m
=

2k

N
=⇒ ω ≜

l

m
π

4.2.4 CT Periodicity

x(t) = eiωt

appears to imply that the sky is the limit for omega (i.e. ω →∞).

We note that the oscillations become progressively faster.

Slowest frequency is ω = 0 (constant signal).

4.2.5 DT Slowest Frequency

Slowest frequency is ω = 0 rad
sample .

4.2.6 Fastest Frequency for Oscillating DT Signal

For odd multiples of π,
eiπn = cos(πn) = (−1)n

4.3 Filters

There are 3 types:

• Low-Pass Filter
• High-Pass Filter
• Band-Pass Filter
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4.4 Frequency Response of DT-LTI Systems

There is a special relationship that exists between the Kronecker Delta.

δ(n) -> H -> y = h(n)︸︷︷︸
impulse response

and we have this
x(n) = eiωn -> H -> y(n)︸︷︷︸

special form

Now we can convolve:

y(n) = (h ∗ x)(n)
=
∑

m

h(m)eiω(n−m)

y(n) =
∑

m

h(m)e−iωm

︸ ︷︷ ︸
H(ω)

eiωn

eiωn ->
H
h -> H(ω)eiωn

This is analogous to eigenvalues: Av⃗ = λv⃗ where λ = H(ω) ∈ C, v⃗ = eiωn, and where A = the
system (the box).

We call H(ω) the frequency response of the LTI system, obtained by plugging the impulse response
into the summation:

H(ω) =

∞∑

m=−∞
h(m)e−iωm

.

This property is known as the Eigenfunction Property of Complex Exponentials with respect to a
DT-LTI System.

4.4.1 Modulation

x(n) ->

eiω1n

|
v

X -> y(n) = eiω1nx(n) = ei(ω0+ω1)n

29



4.4.2 DT LTI Valid Examples

α0e
iω0n + α1e

iω1n ->

LTI

H -> α0H(ω0)e
iω0n + α1H(ω1)e

iω1n

If for example, we saw another α2H(ω2)e
iω2n term then we would know our system is not LTI.

4.4.3 Frequency Response of 2-pt Moving Average filter

We want to find the frequency response for the 2-pt moving average filter:

x(n) -> H -> y(n) =
x(n) + x(n− 1)

2

Note that if x(n) = (−1)n = eiπn =⇒ y(n) = 0 ∀n.

However if x(n) = 1 = ei0n =⇒ y(n) = 1 ∀n.

Sanity check values:
H(ω = 0) = 1

H(ω = π) = 0

Finding the frequency repsonse:

Let x(n) = δ(n) =⇒ h(n) = δ(n)+δ(n−1)
2

then we note the dotplot is 1
2 at n = 0 and n = 1 and 0 everywhere else.

Now, we can compute the expression as follows:

H(ω) =
∑

m

h(m)e−iωm

= h(0) + h(1)e−iω

H(ω) =
1 + e−iω

2
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5 Thursday, September 8th

5.1 Overview

DT Frequency Response:

• 2 point Moving Average Filler
• Recursive Filter

5.2 DT Frequency Response

5.3 2-Point Moving Average Filter

5.4 Computing H(ω)

5.4.1 Example: Using 2-pt moving average

5.5 Plotting Frequency Response

5.5.1 Example: using 2-pt moving average

5.6 2π-Periodicity of DT-LTI Frequency Response

5.7 DAG (Delay-Adder-Gain) Block Diagram Implementation

5.8 The Big Picture

5.9 LTI System w/o LCCDE Representation

5.10 Finite-Duration Impulse Response

5.10.1 FIR (Finite Impulse Response) Filter

5.11 Infinite-Duration Impulse Response

5.11.1 IIR (Infinite Impulse Response) Filter

5.12 Frequency Response for Recursive Filler
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Lecture 5 , 9/8/2022

Overview
• DT Frequency Response
-2 point Moving Average Filler
- Recursive Filter

DT Frequency Response

xcnteiwn → H → ycntltcweiwn

Hlw)=Éhln)éiwn=Freq Response of Filter It
n=-00

2-Point Moving Average Filter

✗(a)→
'

H → ycn)=×↳+×(n-D 1.1121%2)
Mn)

HIM ,
Hlw) 2

0 ◦ ◦ •

to 1
,

• • ° ° ° > N

hln) : let xcntscn) → ycnthln)
hln)=8CnH8Cn-D2

Computing Hlw) (using 2-pt moving average as example)

Method I : Use definition of Hlw)

Hlw)=§hCn)éiwn
Hlwkhlo)-1ha)éiw=He

Method -1: Use eigenfunction property of complex exponentials Wrt LTI systems
Note: this method Letxcnteiw"→ ycnkltlweiwn. Then we have:

assumes that ycntxcnltxcn-1) (Linear constant
- Coefficient

the frequency
2

. Difference Equation CLCCDE))
response exists ltcweiw"=eiw"¥ᵈⁿ"=He-÷eiwn

Hlw)= tegiw
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Plotting Frequency Response (using 2-pt moving average as examples

Hlw)=/ Hcw) / e.
itHim

↓ ↓
Magnitude Phaser
Response Response

1

/ Hlw) / = jFa+£coscwD2+f£sincwÑ ← Oneway
=/he"%£eiᵗ"w / ← Better Way ( Exploit Symmetry)Balancing theG
= 1

eiwla + e-iwbn
e-
ink /Exponents

2

= / cos (G) e-i% /
= / cos(E) I

•

2 / cos (E) /
* We only consider the range [-71,1-1] because

< I 1 I >
w

those are limits of a DT filler

- IT 0 17

Low Pass

Note: / Hlw) /=/Hlw-12%1 holds for all DT filler frequency responses

21T- Periodicity of DFLTI Frequency Response

Hlwtndhcnéiwn
Hlw-12-11)= { hln) e-

icw-121T)n

= Eh (n) e-iwne-icann
in

= { hln) e-
iwn

=L f n c- I

= Hlw)
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Delay- Adder- Gain Block Diagram Implementation

H
Normal : Xcn)→ has , #(w)

→ yen)=✗cm+¥

DAG : xcn) . > DÉ
Unit Delay
Block

%
scaling

%
Block

yen)=×c¥
£✗(n)

Adder
tzxcn) -1+2×4-1)

Block

Alternate DAG : ✗Cn) t.DK"'
(More Efficient) ]

>+ xcntxcn-11
> % → yen)=✗cm+z~)

✗Cn)

The Big Picture

Moving between various characterizations of LTI systems

Impulse
Response LCCDE

•< > •

an M

VL
• L 3•✓

Frequency DAGBLK

Response Diagram
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DT-LTISyslemwloLCCDERepresentati-L.ee Hcw)

h (n)=
sincwcn)
won

n c-I

- it toe wk ¥ > w

Finite-DurationImpulseResponse.F-22-ierbolo.br
hcn)

• • to 1 • • •>
n

un
Finite Region of support

Infinite-Duration Impulse Response (IIR) Filler

ycntxycn- 1)+✗Cn) , y C-D= 0 , KK /
in

Base case

✗(n)- > ycn)

↑✗yen- 1)

'?

✗ -

✗ ycn)

Determine hcn) : h C-D= 0
hlnt-xhln-D-S.cn)
h(01=2halt 8107=1
h (1)= 2h10)-184) = ✗

h (2)= 2h11) -18121=22
h (3)= 2h12) -18131=23

i

had= ✗ n tf n≥ 0

↳ hcn)= ✗nucn) where ulnt unit step
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Frequency Response for Recursive Filler

ylntxyln-1) + xcn) , yC-D=0 , 1214

hlntxnucn)

D

Method 2 : Hlw)=¥• hcnléiw
"

=¥odⁿuCn) e-
iwn

= ✗
"

e-
iwn

= ✗e-
iw)
"

=

, _
w

L Note: kéiwtklleiw /⇒4<1

Method I: xcnteiw " → ycntltcweiwn

ycnt-xycn-D-xcnl-XHlweiwcn-D-eiwn-KHlwe-iu.tl) eiwn
= Hlw) eiwn

Hlw)=✗Hlw) e- iw-11

1=11- ✗e-iw) Hlw)
Hlw)=

1- a'e- iw



6 Thursday, September 15th

6.1 IIR Filter Frequency Response

Given a First-Order IIR (Infinite Impulse Response, vs Finite Impulse Response)

y(n) = αy(n = 1) + x(n)

y(−1) = 0

|α| < 1

x(n) = eiωn → y(n) = H(ω)eiωn

y(n− 1) = H(ω)eiω(n−1) = H(ω)e−iωeiωn

H(ω)���eiωn = αH(ω)e−iω�
��eiωn +�

��eiωn

(1− αeiω)H(ω) = 1

H(ω) =
1

1− αeiω
= |H(ω)|ei∠H(ω)

H(ω) =
1

1− αeiω

|H(ω)| =
∣∣∣∣

1

1− αeiω

∣∣∣∣ [By property (1)]

=
1

|1− αeiω|
=

1

|1− α cos(ω) + iα sin(ω)|
=

1√
(1− α cos(ω))2 + α2 sin2(ω)

6.1.1 Properties

∣∣∣∣
z1
z2

∣∣∣∣ =
|z1|
|z2|

(1)

∠
z1
z2

= ∠z1 − ∠z2
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6.1.2 Plot

H(ω) =
eiω

eiω − α
=

1

1− αeiω
(2)

At ω = 0, we have the max response.
At ω = ±π, we have the min response.
Therefore, this is a Low-Pass Filter; see the plot here: https://www.desmos.com/calculator/oa25atozja.

H(ω) =
∞∑

n=−∞
h(n)e−iωn =

∞∑

n=0

αne−iωn

=
∑

n

|h(n)e−iωn| <∞

Q: How to make this (eq (2)) low-pass filter into a high-pass filter?

A: Set α to be in the region (−1, 0), with α = −1 being the sharpest high-pass filter possible. This
makes sense as we have a min when ω = 0 at 1

1−α and maxima at ±π.

Q: How to make this (eq (2)) peak at ω = π
4 ?

A: We can set α = λei
π
4 where 0 ≤ |λ| ≤ 1 determines the aggressiveness of the filter.

6.2 System Properties

∠H(ω) = ∠
eiω − 0

eiω − α

= ∠(eiω − 0)− ∠(eiω − α) [The phase is the difference in phases of the 2 vectors]

ω = 0 =⇒ ∠H(ω) = 0 [Both are at 1, 0 ≤ α ≤ 1]

Plot: https://www.desmos.com/calculator/rvkvjzwhws

Think of a system which delays the input by N, (∀N ∈ Z+), samples (or the system which advances
the input by N, (∀N ∈ Z−), samples):
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6.2.1 Causality

Does not peek ahead in time

Discrete Causality (note that continuous is similar, without the constraint on N):
We say H is causal if for every integer N, if it is the case that two signals x1, x2 ∈ X (where X is
the input space) are equal up to (and including) n = N :
x1(n) = x2(n) (∀n ≤ N) then y1(n) = y2(n) (∀n ≤ N).

Example:

Given a linear system H with input x(n) = u(n) and output y(n) =





1 n = −1
2 n = 0

3 n = 1

0 e/w

.

By the ZIZO property of Linearity, we realize that the zero signal should match up to and including
x2(n) = u(n), (∀n ≤ −1), with Zero-In, Zero-out: so input is x2(n) = 0, (∀n ∈ Z). However, we
expect y(−1) = 0 since y2(−1) = 0 but y(−1) = −1 so we have a contradiction.

What if H is now TI but not Linear?

Let x2(n) = x1(n− 1) = u(n− 1)

But then y(−1) = 1 ̸= y2(−1) = 0 even though they match up to and including −1. So this is not
causal.

6.2.2 BIBO Stability

Bounded-Input, Bounded-Output Stability

We say a signal x is bounded if ∃0 < Bx <∞ s.t. |x(n)| < Bx, (∀n ∈ Z).

Graphically this can be seen as if all lollipops are bounded between (and including) −Bx and Bx.

BIBO Stability is exactly what it says:

Given a discrete system H (with no information on whether H is Linear or Time Invariant),
we say that H is BIBO Stable if every bounded input produces a bounded output.

Example: 3-point moving averager:

y(n) =
x(n) + x(n− 1) + x(n− 2)

3
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We know y is causal since it is only dependent on past value (it does not peek into the future).
Specifically we can say that h(n) = 0, (∀n < 0).

y(n) =

∞∑

k=−∞
h(k)x(n− k) = y(n) = · · ·+ h(−1)x(n+ 1)︸ ︷︷ ︸

want to be identically zero

+h(0)x(n) + h(1)x(n− 1) + · · ·

Note that this actually goes both ways. Mathematically that means the system is stable if and
only if the response is 0 for all negative time.

|y(n)| =
∣∣∣∣
x(n) + x(n− 1) + x(n− 2)

3

∣∣∣∣

=
1

3
|x(n) + x(n− 1) + x(n− 2)|

≤ 1

3
(|x(n)|+ |x(n− 1)|+ |x(n− 2)|)

≤ Bx +Bx +Bx

3
= Bx −By

All BIBO filters are stable by induction on the triangle inequality (given that all lollipops are finite
and not infinite).

6.2.3 BIBO DT-LTI Systems

We say H is BIBO-stable iff
∞∑

n=−∞
|h(n)| <∞

Proof:

y(n) =

∞∑

k=−∞
h(k)x(n− k)
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Let |x(n)| ≤ Bx∀n ∈ Z. Then we have that

|y(n)| =
∣∣∣∣∣

∞∑

k=−∞
h(k)x(n− k)

∣∣∣∣∣

≤
∞∑

k=−∞
|h(k)x(n− k)|

≤
k∞∑

k=−∞
|h(k)|Bx

≤ Bx

∞∑

k=−∞
|h(k)| <∞

= By

for some By <∞.
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7 Tuesday, September 20th

7.1 BIBO Stability (continued)

We say H is BIBO-stable iff
∞∑

n=−∞
|h(n)| <∞

7.1.1 Sufficiency

Proof:

y(n) =
∞∑

k=−∞
h(k)x(n− k)

Let |x(n)| ≤ Bx∀n ∈ Z. Then we have that

|y(n)| =
∣∣∣∣∣

∞∑

k=−∞
h(k)x(n− k)

∣∣∣∣∣

≤
∞∑

k=−∞
|h(k)x(n− k)|

≤
k∞∑

k=−∞
|h(k)|Bx

≤ Bx

∞∑

k=−∞
|h(k)| <∞

= By

for some By <∞.

Definition Of BIBO Stability: Every bounded input produces a bonded output.

7.1.2 Necessity

The other direction of the proof.

We can start with the contrapositive (Recall that the contrapositive of A =⇒ B is ¬B =⇒ ¬A).

We say that h ∈ ℓ1 if
∑

n |h(n)| < ∞ if h is absolutely summable, where ℓ1 is the space of all abs
summable functions.
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Continuous Counterpart (will not go over today):

We say that h ∈ L1 if
∫
n |h(n)|n <∞ if h is absolutely integrable, where L1 is the space of all abs

integrable functions.

Let us defined the parts of the proof:

• ¬B : h is not abs summable h ̸∈ ℓ1.
• ¬A : H is not BIBO Stable, per the previous definition.
• ¬ BIBO Stable: ∃ a bounded input that produces an unbounded output.

– Various ways to do this, such as finding an input relating to input response s.t. the
output at a single point blows up.

Now we are ready to continue our proof for real-valued LTI systems:
We begin by choosing an input

x(n) = sgn(h(−n)), where sgn(α) =





1 α > 0

0 α = 0

−1 α < 0

To understand the sgn fn., look at v(n) = (−2)nu(n)

Then v̂(n) = sgn(v(−n)) which is all 0 for negative n, and then alternates between 1 and -1 for all
non-negative integers. Note that we will be 0 for all negative inputs.

After time-reversing this, we will note that the mapping (n ∈ E 7→ 1, n ∈ O 7→ −1) still holds,
where E is the set of even integers and O is the set of odd integers. Note that we will now be 0 for
all positive inputs.

We know that v̂(n) is bounded as it can only ever have 3 values. To be precise: |x(n)| ≤ 1 (∀n).

Using this, we can find the particular timestep at which the signal blows up:

x(k) ≜ sgn(h(−k)) =⇒ |x(k)| ≤ 1 (∀k)

=⇒ x(k) =

{
h(−k)
|h(−k)| if h(−k) ̸= 0

0 e/w
[Can be shown via L’hopitals]
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y(n) =
∑

k

x(k)h(n− k) [Convolution Sum]

y(0) =
∑

k

x(k)h(−k)

=
∑

k

h(−k)
|h(−k)|h(−k)

=
∑

k

|h(−k)|2
|h(−k)|

=
∑

k

|h(−k)|

=
∑

ℓ

|h(ℓ)| → ∞ [ℓ ≜ −k]

Therefore we have shown that h ̸∈ ℓ1 =⇒ ∃x, s.t. |x(n)| ≤ Bx but the the corresponding output
is not bounded. Contradiction.

Example:
y(n) = αy(n− 1) + x(n), h(n) = αnu(n)

System is BIBO stable iff |α| < 1.

Example:
h(n) = u(n) h ̸∈ ℓ1

If we convolve h(n) with x(n) to get y(n), then we get y(n) =
∑n

k=−∞ x(k) which is a cumulative
sum.

Let x(n) = 1 ∀n, then the output at say n = 0, but this could be any point wlog, is infinite. This
is as you are taking the cumulative sum of an infinite sum of constants.

For another example of this “blowing up” behavior x(n) = u(−n) = sgn(u(−n)) which perfectly
overlaps when time-reserved giving y(0) = ∞. Since they both have 1 for all non-negative integer
inputs.

7.2 BIBO Stability (continued)

A system is BIBO Stable if |λ| < 1. If this condition is not satisfied tehn we do not have a frequency
response. Note that in the special case of λ = 1, we may still have a frequency response exist.

If h ∈ ℓ1, (aka if the system is BIBO-stable/absolutely summable), which means the frequency
response |H(ω)| <∞ ∀ω and that H(ω) is continuous in ω.
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|H(ω)| = |
∑

n

h(n)e−iωn|

≤
∑

n

|h(n)e−iωn| [Triangle Inequality]

=
∑

n

|h(n)| |e−iωn|︸ ︷︷ ︸
1

=
∑

n

|h(n)| <∞

Some LTI Systems have h ̸∈ ℓ1 but h ∈ ℓ2.

Example from Calculus: Harmonic Series =
∑ 1

n ̸<∞ but
∑ 1

n2 <∞.

The ideal LPF =

{
G0 ∀ω ∈ (−ωc, ωc)

0 e/w.
which is a discontinuous boxcar,

and |ωc| < π as we are Low-Pass.

Another example is h(n) = G0
sin(ωcn)

nπ .

For ℓn, where n > 2, all bets are off. At the end of the semester we can use Laplace or Z-Transforms
but we cannot say anything about their frequency responses as they may not even exist.

Ideally we have ℓ1, but we can deal with ℓ2; however if we have ℓn, n > 2 then all bets are off.

7.3 LCCDEs & Freq Resp.

Not all are LCCDE, but those that are have nice Freq Resp.

a0y(n) + a1y(n− 1) + · · ·+ aNy(n−N) = b0x(n) + b1x(n− 1) + · · ·+ bM (xn−M)

N∑

k=0

aky(n− k) =

M∑

m=0

bmx(n−m) (3)

Recall that for y(n) = αy(n− 1) + x(n) or:
1︸︷︷︸
a0

y(n)− 1︸︷︷︸
a1

αy(n− 1) = 1︸︷︷︸
b0

x(n), M = 0, N = 1 where max(N,M) = order of the system.
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Let x(n) = eiωn,

y(n) = H(ω)eiωn

y(n− k) = H(ω)eiω(n−k)

y(n− k) = H(ω)e−iωkeiωn

x(n−m) = eiω(n−m)] = e−iωmeiωn

Plugging into (3),

N∑

k=0

akH(ω)e−iωk���eiωn =
M∑

m=0

bme−iωm���eiωn

(
N∑

k=0

ake
−iωk

)
H(ω) =

M∑

m=0

bme−iωm

=⇒ H(ω) =

∑M
m=0 bme−iωm

∑N
k=0 ake

−iωk
[which is rational in eiω]

Let H(z) = B(z)
A(z) , B(z) = M th order polynomial. A(z) = N th order polynomial.

H(z) is rational in z.

First order (max(M,N) = max(0, 1) = 1) IIR Filter: H(ω) = b
a0+a1=e−iω = 1

1−αe−iω

7.4 LCCDEs & State-Space Resp.

q(n+ 1) = Aq(n) +Bx(n) [State-Evolution Eqn.]

y(n) = Cq(n) +Dx(n) [Output Eqn.]

q(n) =



q1(n)
...

qN (n)




x, y ∈ R1, AN×N is the state-transition matrix.
BN×1 is a column vector, C1×N is a row vector, D1×1 is a scalar.

Giving the current charge of the capacitor (a memory element) of a circuit, you do not care how it
got there.

Example: y(n) + a1y(n− 1) + a2y(n− 2) = x(n).

Note that this LCCDE example is particularly shifted as it doesnt have any delayed (shifted) term
in x. Specifically, we can use this trick:
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Pick q1(n) = y(n− 1), q2(n) = y(n− 2) such that q1(n) = q2(n+ 1),
where we picked all y(n− k) ∀k ̸= 0.

Note that the order of this system is max(0, 2) = 2 which makes dim(A) = 2× 2.

[
q1(n+ 1)
q2(n+ 1)

]
=

[

1 0

]

︸ ︷︷ ︸
A

[
q1(n)
q2(n)

]
+

[

0

]

︸︷︷︸
B

x(n)

=⇒ q1(n+ 1) = y(n) = −a1 y(n− 1)︸ ︷︷ ︸
q1(n)

−a2 y(n− 2)︸ ︷︷ ︸
q2(n)

+x(n)

= −a1q1(n)− a2q2(n) + x(n)

y(n) =
[
−a1 −a2

]
︸ ︷︷ ︸

C

[
q1(n)
q2(n)

]
+ 1︸︷︷︸

D

x(n)
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8 Thursday, September 22th

8.1 LCCDEs & State-Space Resp. (continued)

Draw a Delay-Adder-Gain (DAG) block diagram with minimum number of delay blocks:

q(n+ 1) = Aq(n) +Bx(n)

y(n) = Cq(n) +Dx(n)

q(n) =

[
q1(n)
q2(n)

]

y(n) = q1(n) + b0x(n)

=
[
1 0

]
︸ ︷︷ ︸

C

[
q1(n)
q2(n)

]
+ b0︸︷︷︸

D

x(n)

q1(n+ 1) = −a1y(n) + q2 + b1x(n)

= −a1
[
q1(n) + b0x(n)

]
︸ ︷︷ ︸

y(n)

+q2(n) + b1x(n)

q1(n+ 1) =
[
−a1 1

] [q1(n)
q2(n)

]
+
[
b1 − a1b0

]
x(n)

q2(n+ 1) = −a2y(n)

−a2
[
.
] [q1(n)

q2(n)

]
+ (b1 − a1b0)x(n)
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8.2 Dirac Delta (CT Impulse)

Recall the Discrete Time unit Impulse function:

δ(n) =

{
1 n = 0

0 e/w
.

We now generalize this to Continuous Time (CT), with the Dirac Delta:

δ(t) =

{
∞ t = 0

0 t ̸= 0

Note: this is a useless description by itself – but becomes useful when applied with Calculus.

Visually, this can be drawn out with an arrowhead instead of a lollipop.

Recall that Newton’s Second Law states: F⃗ = dp⃗
dt

Sampling Property:
x(t)δ(t− t0) = x(t0)δ(t− t0)

More generally: ∫ ∞

−∞
x(t)δ(t− t0)dt = x(t0)

given that integral bounds a ≤ t0 ≤ b (otherwise you would just get 0).

Strength 1 = area 1.

8.3 CT Convolution

x(t) =

∫ ∞

−∞
x(τ)δ(t− τ)dτ

8.4 CT Frequency Response

If LTI (Linear and Time-Invariant):

x(t) =

∫ ∞

−∞
x(τ)δ(t− τ)dτ → H → y(t) =

∫ ∞

−∞
h(τ)δ(t− τ)dτ

Let λ = t− τ =⇒ τ = t− λ =⇒ dλ = −dτ

This u-substitution allows us to write y(t) as

∫ ∞

−∞
−h(t− λ)δ(λ)dλ.
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9 Tuesday, September 27th

9.1 Detour: DT-LTI Systems & Internal Stability

State-Evolution Equation:
q(n+ 1) = Aq(n) +Bx(n)

Output Equation:
y(n) = Cq(n) +Dx(n)

9.1.1 Internal Stability

Also called Asymptotic Stability by some.

Given

q(n+ 1) = Aq(n)

y(n) = Cq(n)

Zero-Input Response (ZIR). You start at q(0) and just let the system go (in a circuit example, this
could be seen as letting the capacitor be adapted by nature).

The system is internally stable if lim
n→∞

q(n)→ 0 regardless of the initial state ZIR q(0).

Unrolling the recursion we get:

q(n+ 1) = Aq(n)

q(1) = Aq(0)

q(2) = Aq(1) = A2q(0)

...

q(n) = Anq(0)

If we assume A has N distinct eigenvectors A ∈ RN×N then we know:

A = V ΛV −1
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Any initial state can be decomposed into a linear combination of eigenvectors:

q⃗(0) = α1r⃗1 + · · ·+ αN r⃗N =

N∑

ℓ=1

αℓr⃗ℓ

q⃗(0) =



| | |
v⃗1 · · · v⃗ℓ · · · v⃗N
| | |




q⃗(0) = V α⃗

q(n) = Anq(0)

A = V ΛV −1

A2 = V ΛV −1V ΛV −1 = V Λ2V −1

...

An = V ΛnV −1

=⇒ q(n) = V ΛnV −1q(0)

q(n) = V Λnα

Therefore the initial state is determined by the coefficients αi’s.

Therefore regardless of the initial state is equivalent to saying regardless of the αi’s. For this to
happen, we must impose some conditions on q⃗(n) =

∑N
ℓ=1 αℓλℓv⃗ℓ

This happens if and only if |λi| < 1 (∀i). If all the eigenvalues are within the unit circle then
lim
n→∞

(λℓ)
n → 0 (∀ℓ).

Note that internal stability implies BIBO-stability but the converse is not true due to unobservable
mode (something that cannot be excited by the input) e.g. hidden eigenvalues which are unstable.

9.1.2 Fibonacci Example

See HW3.4.

9.2 CT-LTI Systems & Frequency Response

To be continued in next lecture – we ran out of time today.
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10 Thursday, September 29th

10.1 CT-LTI Freq Resp (contd)

Given the RC circuit from last time:

x(t) R

C

−
+

−Q +Q

yC(t)

yR(t)

Circuit diff eq:
RCẏC(t) + yC(t) = x(t)

Let x(t) = eiωt 7→ HC(ω)e
iωt.

Therefore:

HC(ω) =
1

RC

iω + 1
RC

=
1

RC

iω −
(
− 1

RC

)

This gives us a Low-Pass Filter with a peak at
1

RC
1

RC

= 1 at 0 and a cutoff frequency of ωc = −3dB =

20 log10

(
1√
2

)
.

∠H(ω) = ∠
1

RC
− ∠r⃗

= ∠
1

RC
− ∠(iω +

1

RC
)

= 0− ∠(iω +
1

RC
)

= − arctan(
ω

1/RC
)

Note: The phase of 0 is undefined.

10.1.1 Impulse Response Revisited

hC(t) =
1

RC
e−

t
RC u(t)

g(t) = βe−αtu(t) ⇐⇒ G(ω) =
β

iω + α
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hC(t) =
1

RC
e−t/RCu(t) ⇐⇒ HC(ω) =

β︷ ︸︸ ︷
1/RC

iω + 1/RC︸ ︷︷ ︸
α

RCẏC(τ) + yC(τ) = x(τ)

RCḣC(τ) + hC(τ) = δ(τ) [Note that this is the Dirac Delta]

RCḣC(τ)e
τ/RC + hC(τ)e

τ/RC = δ(τ)eτ/RC [Mult. both sides by non-0 func eτ/RC ]

= δ(τ)

ḣC(τ)e
τ/RC +

1

RC
hC(τ)e

τ/RC =
1

RC
δ(τ)

︸ ︷︷ ︸
d

dτ
[hC(τ)eτ/RC ]= 1

RC
δ(τ)

=
1

RC
δ(τ) [Product Rule of Differentiation]

Note that we prefer integration over differentiation as differentiation is a numerically unstable
operation when you have noise which comes hand-and-hand with analog systems.

10.2 Integrator-Adder-Gain Block Diagram

DAG Block: By FTC, we know to get rid of derivatives, we must integrrate!

RCẏC + yC = x

RCyC +

∫
yC =

∫
x

yC = − 1

RC

∫
yC +

1

RC

∫
x

10.3 CT-LTI Systems described by LCCDEs

10.4 RC-Ckt

10.5 Mass-Spring Damper

See homework 5 q2.
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11 Tuesday, October 4th

11.1 Mass-Spring-Damp

Note that you can have different matrices but they will be similar matrices (have the same eigen-
values).

Mÿ +Dẏ +Ky = x

q̇ =

[
0 1

−K
M − D

M

]

︸ ︷︷ ︸
A

q⃗ +

[
0
1
M

]
x

y =
[
1 0

]
︸ ︷︷ ︸

C

q⃗

det(λI −A) = λ2 +
D

M
λ+

K

M
= 0

=⇒ λ = − D

2M
± 1

2

√(
D

M

)2

− 4K

M

=⇒ λ = − D

2M
±
√(

D

2M

)2

− K

M

=⇒ λ = − D

2M
± D

2M

√
1− K

M

(
2M

D

)2

Now we can look at cases: D = 0

λ = ±
√
−K

M
= ±i

√
K

M
= ±iω

ω0 =

√
K

M(
D

2M

)2

− K

M
= 0 =⇒ λ1 = λ2 = −

D

2M
(

D

2M

)2

− K

M
> 0

As you keep on increasing D, the 2 roots collide and collapse on − D
2M which is a negative real

number (on the negative x-axis).
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(
D

2M

)2

− K

M
< 0

=⇒ λ1, λ2 ∈ C

If we let

λ1 = −
D

2M
+

D

2M

√
1− K

M

(
2M

D

)2

[This will be right of
−D
2M

as we add sth > 0 to a negative]

λ2 = −
D

2M
− D

2M

√
1− K

M

(
2M

D

)2

[This will be left of − D

2M
as we subtract from a negative]

This works due to the sqrt being strictly positive and less than 1 (due to being 1 minus some
positive quantity).

We call it the overdamped case when we are to the left.

Assuming we do not have the pathologically designed (Critically Damped) case of a single repeated
eigenvalue then choosing our state vector to contain the position and velocity. Then we get

q̇(t) = Aq(t)

or
q(t) = eAtq(0)

So our initial position initial velocity are given by q(0). Then

q(0) = α1v⃗1 + α2v⃗2

q⃗(t) = α1e
Atv⃗1 + α2e

Atv⃗2 [Note eAt =

∞∑

k=0

tkAkk!]

=⇒ eAtv⃗1 = eλ1tv⃗1 [Using the eigenfunction property]

11.1.1 Purely Oscillatory

D = 0 =⇒ λ1 = iω0, λ2 = −iω0

q⃗(t) = α1e
iω0tv⃗1 + α2e

−iω0tv⃗2
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Case when λ1 < 0, λ2 < 0 and λ1, λ2 ∈ R:

q1(t) = α1e
λ1tv11 + α2e

λ2tv12

Another case is λ1 = iω, λ2 = −iω.

Note that complex eigenvalues come in conjugate pairs. So λ = σ ± iω1. Note that σ is a negative
real scalar since eigenvalues need to be less than zero s.t. they decay.

∴ q1(t) = eσt
[
α1e

λ1tv11 + α2e
λ2tv12

]

Therefore we get an oscillating decaying behavior.

11.2 Interconnections of LTI Systems

11.2.1 Cascade Series

x(t)→ F → G → y(t)

is equivalent to
x(t)→ H → y(t)

where H := F → G

h(t) = (f ∗ g)(t) [As F → f(t)]

x(n) ≜ eiωt =⇒ F → F (ω)eiωt =⇒ G→ G(ω)F (ω)eiωt

H(ω) = F (ω)G(ω)

We have now found a property for series:

h(t) = (f ∗ g)(t)
H(ω) = F (ω)G(ω)

11.2.2 Parallel

Likewise we can see that we get:
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h(t) = (f + g)(t)

H(ω) = F (ω) +G(ω)

11.2.3 Feedback

Given an LTI system with a feed-forward branch (Plant, P (ω)) as well as a feedback branch
(Controller, K(ω)), find H(ω).

We know from the eigenfunction property that: y(t) = H(ω)eiωt.

Our input x(t) ≜ eiωt tells us that:

eiωt +K(ω)H(ω)eiωt → P (ω) → P (ω)
[
eiωt +K(ω)H(ω)eiωt

]

P (ω) [1 +K(ω)H(ω)]��eiωt = H(ω)��eiωt [P (ω)→ y(t)]

H(ω) =
P (ω)

1−K(ω)P (ω)

11.2.4 Black’s Formula:

H(ω) = (Forward Gain)/(1 - Loop Gain)

−60 dB = 20 log10

( |Out|
|In|

)
=⇒ |Out| = 1

1000
|In|

What if we subtract K(ω) instead?

Then we get the new equation:

H(ω) =
P (ω)

1− (−K(ω)P (ω))
=

P (ω)

1 +K(ω)P (ω)
≈ 1

K(ω)

Let |K(ω)P (ω)| ≫ 1 (∀ω ∈ [w1, w2]) which is the frequency range of interest, we can then build
flat K(ω) = K0, for K0 < 1.

Note that here we assume the plant is stable – which may not be necessarily true. If it is not the
case then feedback can be used to stabilize it.
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11.3 Application 2: Inverse System Design

I will title this after we get the main result.

Let us now reverse the roles of the controller and plant. We will also make this a “negative feedback
loop” as we will subtract P (ω) as it goes into the adder with the input which this sum then goes
through K(ω) to give us or output.

If |K(ω)P (ω)| ≫ 1 (∀ω ∈ [w1, w2]) then:

H(ω) =
K(ω)

1 +K(ω)P (ω)
=⇒ H(ω) ≈ �

��K(ω)

���K(ω)P (ω)
=

1

P (ω)

This gives us an impulse response of δ.

The title of this application is Inverse System Design.

11.4 Application 3: Stabilization of Unstable Systems

Given a voltage source connected to a Capacitor, we have:

y(t) =
1

C

∫ t

−∞
z(τ)dτ

h(t) =
1

C

∫ t

−∞
δ(τ)dτ =

1

C
u(t)

Is this absolutely integrable (e.g.
∫∞
−∞ |h(t)|dt <∞)?

Note that the Capacitor is not BIBO-Stable.

Now with an RC circuit, realize that:

y(t) =
1

C

∫ t

−∞
z(τ)dτ =

1

C

∫ t

−∞

x(τ)− y(τ)

R
dτ

The gain of 1
R acts like K and the gain of 1

C composed with the integrator acts like P .

Conclusion: the RC circuit is actually a feedback system.
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12 Thursday, October 6th

12.1 Overview

12.2 Feedback System

12.3 Fourier Analysis

12.4 DTFS
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Lecture 12
,
10/6/2022

Overview
• Feedback ( Last application)
• Fourier Analysis

Feedback System

↳ Application -11:

/
← bo

PCW)=
1-✗e-

iw
,
044

AT %
,

¥ 1PM

aoylnltaiycn-D-boxlni-i-I.tn
Ylh) -xycn

- 1) = xcn)

Ylnkxylnttxcn)
- it ↓ ¥

Low-pass Filler

Can convert to High-pass Filter as follows:

✗ in it > Plw) > you ✗ IN Plwktxteiw -

g-
Y"

A-

KCW) ⇔

B < D < klwtpséiw

H H
I

Plw)
= =t-pe-iwtsylnt-k-pyln-D-XHHIW-1-kcwplwl-1-ae.tw

↳ Pick B such that ✗<p< ✗+1 to make a High-Pass filter
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10/6/2022

Fourier Analysis

✗It)=2cos(2Tlt)cos(2001-11-1

=2ws(2-1111)t)cos(2411007T) ✓÷✓
=2cos(Wit)cos(Wat)

where wi-2-radls.wz-200-radlsfi-lltzfi.NOHz
"

Beating Effect
"

↳Fourier Analysis: About breaking down /decomposing)a signal into its constituent
frequencies

eiwt.HN > Hlw,)eiwᵗ

eiwat > Hlw) ytlwaeiwat

xlt-qeiwt-xaeiu.at > Hlw) > a,H(wieiwittaaltlwaeiwat

Computing constituent frequencies:

xltt-2cosl2-tlcosl200-H-coskg-E.tl/-cosC2y;q-t) 2 Using the identity cos✗+cosp=2ws(%ˢ)cos(✗⇒)

= tgei2-199t-lze-i2-99t-lzei2-i.IO/t-1ze-i2Tl.l01t
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10/6/2022
Fourier Analysis

DT CT

Periodic DTFS → CT Fs
DTFS : DT Fourier series

CT FS: CT Fourier series

DTFT : DT Fourier Transform
Aperiodic DT FT FT

CT FT : CT Fourier Transform

DTFS
4.4) 4.47 %)

Xcn)

(•2) §) (•2)

-

'

a -it :{
' '

n

F-2
,
wo=¥ʰ¥= -11

,
so we can express ✗

= [ 24] ←✗4)=×"←xp-D=✗(1)

↳ Let 19=[67,19--19] , then ✗= [51--4%7+217]=4%+20,

↳ Let V◦=[17,4=147
,
then x=[¥]=X◦V◦tXih=X◦ei°ⁿ+X,e""

↳yfnj-eionbqcn-ei.tn *HOLY
,

To determine Xo
, project ✗ onto % : X.VE/XoYo+Xi4)e.Yo2y..y,=o--Xi0iHo

Thus
, X◦=¥¥◦ . Similarly , k=É¥.

. Finally ,
we have:

✗=X◦Y
, -111,4--34,1-4=3eion-e.im

↳ For any P
- periodic DT signal , we have that

✗(n)=✗◦ eiowm-X.eiwon-xaeiwi.nl . . . + Xp, eilp
-Dwm

and only the following frequencies contribute DX: 0
, Wo ,2wo , _ . - two, - Dwo



13 Tuesday, October 11th

13.1 Review

13.2 DTFS

13.3 Inner Product Defn.

13.4 DTFS (contd.)

13.4.1 Characterization of a DTFS

13.4.2 Relationships between Time/Frequency Domains

13.4.3 Relaxation of DTFS Equations
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Lecture B , 10/11/2022
Review

✗Cnt2)=✗(n) , F-2 ,
wo=2¥=IT

✗Cnt ✗◦4dm+X,
Y , (n) where % (a) = eikw

"

↳ You=/ V-n.4.cn)=ei"ⁿ=fDⁿ ten
✗
◦ ,
X

,
= Fourier coefficients ,

✗✗
=
#%

YÉYK

DTFS

Key Properties of 4k:
• Hk (ntp)= eikwdn-P-eikwmeikwop-eikwonei2-i-eikwon-Y.IN
• VI.
µ ,,
(n) = eilktpwon-eikwmeipwon-eikwonei2-1-eikwon-yp.cn)

Theorem : given periodic signal ✗(ntp)- xtn) ltn , 7 p_ C- Al , we can express ✗ as follows :

xlnt-xih.CN/-XihCn)----tXkYdn)-.--tXp-iYp-kn)
where Yin)= eikw

"

, w☐=2¥

and we have that Xo
, . .

. ,Xk
, .
. .

,Xp_ , are the only frequencies present in a p-period signal and
form an orthogonal basis .

Inner Product : given complex vectors f. g c- ICP , we can define inner product : Gig> E fTg*

↳Properties :
• {f.g)= <g.f)

*

• {✗f. g)= ✗<f.g)
• {f. fog>=p

*

(f.g)
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10/11/2022

DTFS (continued)

✗= Xoxo -1 - -
- +Xiilkt - -

- 1- Xp-Mp-1
Assume for now that (A) iecp-☐ are all mutually orthogonal .

To determine Xk
,
we project ✗ onto XK as follows:

tx.lk> = < Éiixeue ,
%>

= ÉÉ <Xileilk>
= ÉÉ ✗elite.tk>
= Xkfyk ,

L since <Ye
.HI

V-e-tksx.lk
>

Thus : ✗E- ahaha>

Show that vk.VN=p :

The,Yk> = YiY¥=¥É%nY¥n) = ?É eikwme-ikwm-E.si [=p

Show that YKLYet k≠l:

44k
,
He> =*%*

= 'ÉiYdnM¥n
= Éiieikwonéiewon
= Éj eilk-e)won

= ÉÉ [eick-elwyn
=
eilk-ltwop-eilk-ltwo.co

eiwo - I

= 0

↳ {% ,
He> = {

P it k=e

0 if k≠e

=p 81k
- e)
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DTFS (continued)

x=ÉÉ×ik ⇒ xcm-i.EE/iihdn--EziXkeikw" (synthesis Equation)

(x,Yd I

✗" = a.%>
= -p1xik> ⇒ Xk=¥ÉÉxcnM¥N=¥ÉÉxcméikw" (Analysis Equation)

Characterization of a DTFS :

✗In)=ÉÉXkeikwon
XK = ¥

"

xcnle-ikw.ir
Synthesis Eq .

Analysis Eq .

Interpretation of Xo : Xo=¥ÉÉxcn)= Average of ✗ over one period

Relationships between Time / Frequency Domains :

Coefficient XK = Xktp

Complex Exponent HIM = %+%n)
I &

Frequency kwo =

lktplwo

Then
, we can relax the DTFS Equations to be more general :

✗Cn)=¥Ep> Xkeikw
"

Synthesis
×,<=¥¥⇔×cmé""" Analysis

where <p> ≤ asetofp contiguous integers

Ex
.
xcn)=cos(¥n)V-nE2

g=X2
↳ p=3,wo=2¥=¥

.

Instead of directly computing Xo,XnXa, it's easier to just compute ✗→Xoix , .
✗In)=£éi¥ⁿ+£ei¥n
X◦=O Éfx, ,

⇒ ✗0--9×1=+2,1/2--21
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DTFS (continued]

EX
.
✗Cntcoscn)

↳ Not periodic , and thus has no DTFS expansion
(Period not rational)multiple of it



14 Thursday, October 13th

14.1 Review

14.2 DTFS (contd.)

14.2.1 Poisson’s Identity

14.2.2 DTFS Properties

14.3 Inner Product Defn.
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Lecture 14
,
10/13/2022

Review

✗(n)= Eg>✗Kei
Kwon

✗k
= ¥¥⇒xcn) e-ikwon

Synthesis Eqn
Analysis Eqn

DTFS (continued)

Ex
.
✗Cn1=cos42¥n)

↳ xcn)=Hws(¥ⁿ)=£+£cos(4⇒n)= 4- e- i¥ⁿ+ 1-2+1-4ei¥ⁿ
2

↑ ↑ ↑

p=3 , wo=¥ ×-2=4 Xo X2

Ex : ✗Cn)=eÉ• 8 (n- lp)= - . . -181N-p)-18cm -1 Slntp)
↳ Period p , wo=É
✗✗= ¥ ÉÉxcme

- ikw" ⇒ All terms are zero
, except n=O b/c xCD=xC2)= - -

- =xCp-17=0

✗1<=13×107--13 Uk C- {0,1 , . . .pt}

↳ xcn)=ÉÉXkeikw"=¥ÉÉ eikwon
✗Cn)=Ég8ln-lp)=¥ÉÉeikw" (Poisson's Identity)

Let us prove Poisson's Identity :

• Case 2: n mod p=0 , h=mp

↳ f- ÉÉeikc¥mP=¥ÉÉeik2-"m=¥ÉÉ I = I

• Case I: nmodp -1-0
↳ ÉÉeikwm=ÉÉ [eiwon-gk-eiw.PHa- I

= 0

Properties :
• xcnt-xcn-PV-nc.TL , 7- PEN
• xcn) C- Rtn XÉ=X

,
(Conjugate Symmetry Property)

• ✗(n) C- Rtn
,
Xlnkxtn) → X¥=X-k=Xk

(signal real & even) ( Coeft real & even)
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DTFS /continued)

%)

1%1 ,
✗Cn)

Ex
.

• • • • > n

↳ Create a periodic extension of × : Itn)=ÉgxCntlp)= . . - txcnptxcntxcntpt . . .

p=3
= - .

.tn/Cn-3)-XCn)tXCnt3)---XCnkS*cn)n=-i.o.iOelwp--3,wo--2¥

Ñk=§¥,xTn1éik¥n=§¥;×(n)éikEn
Since ✗ is real & even , we know that Xk=X_KEIR .

Thus
,
we can compute:

Ño=AvgofxCn) overnc-E-i.o.B-tscz-BXT-z-fxc-deiE-xcotxcde.IE)=§(Hcos( E's))=£
=Ñ→

Thus
, since Xi=Ñi

,
we have that xcn)={ 3-

+ téi¥ⁿ+tei¥ⁿifn-t.o.ioelw

Matrix-Vector Formulation CDTFS)

✗(n)=É≥XkeI=ÉÉXihdn),nE[pig
%n)=eikwon

×!? 4<107 %:?)( xc? )=X◦[¥¥ _ . -1×1<(4%1)-1 - - - + Xp-1/4.in) ): :

Xp-11 Help-17 Xp p
- 1)

Different NotationsTEE TE TE L ↓
↳

✗=[%¥m] / = ?IX_ where E- (¥
" : "÷!:

- %""

%" - i. Ykcnl . .
. yp.in/=(YkCn))=feikwon]:

¥Ñ Hep-iii.viii.iii.iy.im
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Matrix-Vector Formulation CDTFS)

✗=VII where I is orthogonal

Note that :
• ETUI

*

=pI

• TUH Tv =pI
• (¥-4*1-1=3
TE

↳ F- E-
'
= f-E

"

(Fourier Matrix)

E- IX.→ E-
'

*=L

The fourier transform converts a signal in the time domain into its coefficients in the freq domain !
↳ *= Fx

Parserat 's Theorem /for DTFS)

¥ ¥⇔txñP=¥g 1×1<12



15 Tuesday, October 18th

15.1 Overview

15.1.1 DTFS Wrap-Up

15.1.2 CTFS

15.2 DTFS

15.3 CTFS

15.4 DT vs CT
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Lecture 15 10/18/2022

Overview

• DTFS Wrap-Up
• CTFS

DTFS
DFLTI

Icn)=✗(n+p)=xCn)
'
""

> yYn)=y(n+p)=yCn)> Hlw)

(✗ is p-periodic ly is p -periodic)

*

If ✗ is p- periodic, then y is periodic , and its period cannot exceed p

Since y is periodic it has a DTFS expansion
-what is it?

eikwon > Hlw) > Hlkwo)eiᵗw°"

✗KeiKwon > HCW) >*Hlkwo) eikwon

✗(a)= ,¥>✗Keiko
"

> Hlw) > yln)=¥→XkHlkwo)eikw%¥p> Yiaeikw
"

¥

CTFS

×:*→ ¥
a

✗Atp)=XCt) Vt for some p>0

If p is the smallest possible real value that satisfies xcttptxcpttt , then it is the fundamental
period, and we have wo=2¥ .
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Lecture 15

CTFS

'

✗A)= É→Xxe¥÷¥=É→Xk%ᵗ (synthesis Equation)

The frequencies that contribute to ✗ are : . . . -2Wo -Wo O Wo 2wo " '

↑ ↑ ↑ ↑¥
,

xi xi xi k

g
Gibb's Phenomenon

Example:
>

✗(f)= TÉ•Xkeikw°ᵗ →will always produce some
"

spikes
"

as shown in the red
.
This is known

as
"

Gibb's Phenomenon
"

In computers , instead of using a perfectly continuous function XCH , we use a finite sum approximation
like xwltt-EN.gl,eikwot

Determining the Coefficients Xk :

Assume: • We have a properly- defined inner product
•4k are mutually orthogonal , i.e. YKLYe tk≠e

Then
,
to determine Xe

,
we project x=EXk% onto % as follows: Exile>= <Exile ,

He>

= EXHUME>
= ✗Kate

,
He>

Ex, He>↳ HE txeile

What is a good inner product? In DT, we defined <f.g) ≤ Eap> finger
↳ In CT

,
we define {v.u> ≤ I v47 u*It dt

Lp>
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Lecture 15

CTFS

More On Inner Products :

11×112--44×3=1,>✗It)x*H1dt={p> lxctpndt

11%112--514
.
He> = {

p,YeltM*eHdt={p> eilwte-ilwtdt-fp.is It=p

ftp.ife> = §,>7×11-14*41 dt={p, eikwte-ilwd-dt-fpeilk-dwd-dt-fpcoskk-ewotdt-ifpsinf.lk-e) wot] dt=0
where k≠l = I

eilk-e)wot /
P

=

eilklwop - I 1- I
=

i CK-d)Wo o ick-d)Wo
=

ilklwo
=D

Synthesis Equation: ✗A)=É•X¢eikwᵗ

Analysis Equation: Xk={¥¥¥=¥{p>✗A)YEA)dt=¥§, xltléikwotdt

DT vs CT

DT : Lp>=[m ,mtpt]

e.g. m=O → [0 , p-☐

CT : 4⇒=[I
, Ttp)

[-4 Trip ]
(I

, Ttp)

( e.Trip]

Typically , we choose to .pl , [up] , or FB , ¥]

↳*We choose an interval where the bounds are not at any
dirac deltas , so we don't have to

worry about open /closed
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Lecture 15

CTFS

Ex :

'
a

" K" can
✗⇔

- ) .
- ,

^

St
- p o p

[
*
Cannot possibly be a pointwise equalityXlH=Éo8H-ep)

Xk=¥§ÉfHéikwoᵗdt=§a)=¥ }
×"→=É8H-

lpt-E.gl/iikctt-p--.zIeikwotl---NPoissorisIdentity-
↳ FISHIN it)dt= ftp.Feikwotoctldt

YT YT YT

Ex:

I 1 I 1 I 1 I 1 It.IE?...E.Ff..F...-IiZlH=#aZkeikwot
Plz ZK

Zk= # [pqzltéikwotdt
•

'
- •
'

'

•

= # 1%2 e-ikwotdt '

e-
ikwot

172 .i•s=
•

- ikwo -42

sinfkwotz)
= ¥ .

Kwik



16 Tuesday, October 25th

We started with the DTFS and DFT which works for periodic DT signals.

Then we moved onto CTFS which works for periodic CT signals.

Today we will look at the DTFT which works for aperiodic DT signals.

Later we will look at the CTFT which works for aperiodic CT signals.

However we have some good news in store!

h(n), which we define as either h : Z→ R or h : Z→ C, can be written as H(ω) via

H(ω) =

∞∑

n=−∞
h(n)e−iωn

which is exactly the DTFT of h.

Note that frequency responses will be 2π-periodic instead of p-periodic and likewise x ↔ H and
t↔ ω.

x(n) =
1

2π

∫

⟨2π⟩
X(ω)eiωndω [Synthesis Eqn.]

X(ω) =

∞∑

n=−∞
x(n)e−iωn [Analysis Eqn.]

16.1 Method 2

x(t) =
1

2π

∫

⟨2π⟩
X(ω)eiωndω Note: can’t have dirac delta on boundary

⟨2π⟩ = [λ, λ+ 2π] ∃λ ∈ R uncountable set

x(n) =

∫

⟨2π⟩

dω

2π
X(ω)

︸ ︷︷ ︸
Xk∈CTFT

e−iωn Spectrum
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16.1.1 Method 2: Alternate Explanation

Starting from:

H(ω) =
∞∑

n=−∞
h(n) e−iωn

︸ ︷︷ ︸
ϕn(ω)

Pn(ω) = e−iωn

H(ω + 2π) = H(ω) ∀ω ∈ R

ϕn(ω + 2π) = e−i(ω+2π)n = e−iωn����:1
e−i2πn

H =
∑

n

h(n)ϕn

⟨H,ϕℓ⟩ = ⟨
∑

n

h(n)ϕn, ϕℓ⟩ =
∑

n

h(n)⟨ϕn, ϕℓ⟩

16.2 Inner Product Definition

⟨F,G⟩ ≜
∫

⟨2π⟩
F (ω)G∗(ω)dω

16.2.1 Method 2: Examples

⟨ϕn, ϕℓ⟩ ≜
∫ λ+2π

λ
e−iωneiωℓdω

=

∫ λ+2π

λ
eiω(ℓ−n)dω

= 0 after integration

Therefore

ϕn(ω) = e−iωn

⟨ϕn, ϕℓ⟩ = 2πδ(n− ℓ)

⟨ϕn, ϕℓ⟩ = 2πδ(n− ℓ)
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16.3 Ideal lowpass filter

Let us have a freq. response that is 2π-periodic which is centered at 0 which length 2B.

h(n) =
1

2π

∫ π

−π
H(ω)eiωndω

=
1

2π

∫ B

−B
H(ω)eiωndω

=
1

2π

∫ B

−B
Aeiωndω =

A

2π

∫ B

−B
eiωndω

=
A

2π

[
−(ieinω)

n

]B

−B

=
A

2π

(
−(ieinB)

n
+

(ie−inB)

n

)

=
A

nπ

(
einB − e−inB

2i

)

h(n) =
A

2π
sin(Bn) Note: Not causal

Note that h ̸∈ ℓ1 but h ∈ ℓ2 as decaying on the order of 1
n does not converge but decaying on the

order of
(
1
n

)2
does converge so it is square summable.

Note that the DTFT, X(ω), will still be defined, just discontinuous – so the analysis equation will
not work, we would need to find the DTFT some other way. This is due to X(ω) being impulsive
in nature – it has dirac delta(s).

16.4 Different Example

h(n) ≜ eiω0n 0 < ω0 < π

X(ω) = . . .

Note that h ̸∈ ℓ1 and h ̸∈ ℓ2 as it does not converge.
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17 Thursday, October 27th

17.1 More DTFT Examples

17.2 Modulation Property

17.3 Circular Convolution

17.4 Rayleigh-Plancherel Identity
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Lecture 17 : More DTFT

F-✗ I ✗Cnt c- 112 V-n<F→ ✗Iw)

Note that xcnt-xecm-x.cn)→ xecn)=×cm+✗ᵗn
)

2

✗
◦
(n)=

✗Cn)-✗Gn)
2

F{xeln)} =
✗ lwltxtw)
2

=
✗ (w)+ ✗*Iw) 2 b/c xcn) EIR

2

= Re {xcw)}

f- {x.cm}= i Im {✗cut}

↳ xecn) <F→ Re{✗ cut }

X.cm#i2mSxcw}
'

Modulation Property (Dual of convolution Property AAg)Cn) <F→ Few> Glut)

✗(n) >⑦→ ylnt-xcmc.cn)
✗ Iw) ↑ Ylwt

Info- Bearing
signal

CIM

Clut

carrier

signal

Ylwt-z-ycme-iwn-Z-xcnldme-iwnfc.cn)=¥S<a⇒ ( (n) ein da
= 2¥-3km {⇔AN eilttwndn
= ¥1 [⇔ ( (a)§ xcnie-ilw-NY.dz
= 2¥

, [⇔ AN✗ (w-N da
*
(F ⑧ G)(w)= [⇔ Fla) Glw-N da

" Circular Convolution"
= 2¥ ( C ⑧ X) (w)



Lecture 17 : More DTFT

Modulation Property

ycnt-xcmccmLF-Ylwt-at.CC @ ×)Cw)=¥(✗⑧ C)(w)

F-x2 en en ✗(a) a

-

4É → a

-21T -1T 21T

Ccn)=ei¥n
%" kill AN %)

1 1 10 I 1 I >

-21T -3¥ -1T ¥2 IT 21T 5¥

Y(w)=(✗⑧ c)Cw)=¥S⇔XCnKCw-ÑdR
en en en G) a) a) ✗ (W)

YCW)

I 7W-

É¥-21T -5¥ -1T 21T ¥1

Basically ,
since Clw) is a bunch of impulses, to get Ylw) wejustshiftxcwtothe right

by -12

Performing Circular Convolution

I. Keep the more complicated function in place
2. For the other function , delete all replicas
3. Carryout normal convolution (within a single period)
4. Copy to all other periods
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Lecture 17 : More DTFT

Rayleigh- Plancheat Identity

thy >= ¥, LX, Y>

Special case: x=y

↳ Parser at's Identity : sxix-at-KX.is ,
11×112=2%-11×112

Recall Xlw-12a)=XCW)} {×, Y> ≤ {⇔XCw)Y*cw) dwYlw-121T)=YCw)

How do we define inner product for aperiodic DT- signals?

Lx , y>
⇐ ÉxCn)y*(n)
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Lecture 18
,
11/01/2022 : CTFT

Overview
DT CT

periodic
☐TFS FFS ✗(w)= [ Xltléiwtdt (Analysis)
DFT

✓
Aperiodic me, →ÉiÉ?⃝/

{
✗A) = 2¥ .fr?XlwIeiwtdw (synthesis)

CTFT Equations

✗(w)= 5.Ixtle
- int
dt (Analysis)

✗A) = ¥-15 ✗(w) eiwtdw (synthesis)
(w) (f)

Instead of radls, we can also use hertz

✗(f)= f? ✗A) e-iᵗ"ᵗᵗ Dt ( Analysis)
✗A)= 1% ✗(f)ei2"fᵗ df (Synthesis)

However
,
in this class we will be using the CTFT equations writ racks Cw)

Interpretation of synthesis Equation

✗A)=L? ᵈ¥Xw)eiwl.in#
We are looking at an uncountable linear combination of eiwt , where Xlw) represents
the contribution of the corresponding eiwt .
↳ Any frequency within [0 ,+a) can have a contribution to the frequency representation
since ✗ isn't periodic
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Lecture 18 : CTFT

Derivation sketch of synthesis Equation

✗(w)= f.I dt ✗A) e-
iwᵗ
→ ✗=L? It ✗it lot

TÉw

Assuming 0th ∅
, for t≠- , then {×, Ole>= { Sdt ✗A) lot , Ole>

↳ (X
,
Ole> = < Sdt ✗A) lot

,
de>
2 Fubini 's Theorem (Given certain conditions , allows exchange of integral ordering)

= fdtxlt) ( lot
,
Oli

= 21T f-% ✗A) SH-⇒ dt

2 sifting Property= 2-11 ✗(e)

SAK 2¥55 eiwtdw
↳ x⇔=¥ix , ok>

= -21,5% Xlw) eiwedw ✓ {Qt
,
de> = IT +(w) 01¥(w) dw

= 1% e- iwteiwedw
= 2-11 8A-e)

Inner Product for CTFT

For aperiodic functions of a continuous variable :

f , g are functions of time t

F
, G are functions of angular freq w

↳ <f
, g>
EST flag*At dt

LF
,
G) ELI Flw)G*Cw) dw
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Lecture 18 : CTFT

(A) HCW)
Ex 1

'
b > w

-B

int
dw⇔:¥÷!É÷↑:B

= ,- . eBᵗ
= ¥7 sin(Bt)

↳ Not causal bk has nonzero values for to
↳ Not BIBO stable bk it decays according to Yt , which diverges

hit

¥ÉE
-÷

Method has= Ay #y ˢ'¥Bᵗ'
= ¥ . BCOSCBO)

=↑¥

Method h10K¥, 5? Hlw) dw2

-
Area of Rectangle= AB

↳ has = ¥,
CAB)=%?=

1% hat dt= HID= A ( i.e. Area under hat is the evaluation of Hlw) at w=0)



18 Thursday, November 10th

18.1 Watching Video

Here Professor Babak shows various Facebook videos that demonstrate the concept of aliasing to
students.

Example: If your camera samples a video of a Helicopter at the same period (rate) that the propeller
moves at then the Helicopter’s propellers will appear to be stationary as the Helicopter seems to
magically hovers upwards. See https://www.youtube.com/watch?v=yr3ngmRuGUc for one of the
examples.

18.2 Sampling (Cont.)

If time → Z transform

Then
xc(t)z(t) = xz(t)

where z(t) =
∑∞

−∞ δ(t− ℓTs).

If we send xz(t) through a reconstruction (low-pass) filter with sampling frequency ω = 2π
Ts

then we
can get yc(t).

Note that this assumes that the Nyquist Criterion is met (no aliasing).

Today we will look at the time domain.

Q: How do we get h(t)?
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A: We can do use the synthesis equation:

h(t) =
1

2π

∫ ∞

−∞
X(ω)eiωtdω

=
Ts

2π

∫ ωs/2

−ωs/2
eiωtdω

=
Ts

2π

[
eiωt

it

]ωs/2

−ωs/2

=
Ts

πt
sin

(
ωst

2

)

=
Ts

πt
sin

(
πt

2

)

=
sin
(
πt
2

)
πt
Ts

= sinc

(
t

Ts

)
[Normalized sin]

which is 1 at t = 0.

We can confirm this with the synthesis equation:

h(0) =
Ts

2π

∫ ωs/2

−ωs/2
dω

=
Ts

2π︸︷︷︸
1
ωs

ωs

[
ω =

2π

T

]

= 1. □
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18.3 Sinc Interpolation

xz(t) = xc(t)
∞∑

ℓ=−∞
δ(t− ℓTs)

=
∞∑

ℓ=−∞
xc(ℓTs)δ(t− ℓTs) [Sampling property of δ(·)]

yc(t) = (xz ∗ h)(t) [(h ∗ δT )(t) = h(t− T )]

=

∞∑

ℓ=−∞
xc(ℓTs)h(t− ℓTs) [δT (t) = δ(t− T )]

=
∞∑

ℓ=−∞
xc(ℓTs)

sin
[
π(t−ℓTs)

Ts

]

π(t−ℓTs)
Ts︸ ︷︷ ︸

ϕℓ(t)

Note that linear, quadratic, etc interpolation also exist. However for the given reconstruction filter,
we found that it can be represented as a linear combination of weighted sinc’s.

18.4 Nyquist Criterion

To meet the Nyquist criterion, the sampling rate must be at least twice the frequency.

Since the Nyquist criterion is met, the output of the reconstruction is the original signal (e.g.
yc(t) = xc(t)).

We’re living in the space of CT-signals that are band-limited to ωs
2 . In other words, we are looking

at all non-zero signals i the range from ω = −ωs
2 to ω = ωs

2 . This space is closed and satisfies the
other properties to be a valid vector space. This vector space has a valid inner product which gives
a valid geometry which tells us that the mutually orthogonal vectors (a proof of which is alluded
to in homework) forms a bases.

18.5 Rayleigh-Plancherel Identity

⟨ϕℓ, ϕk⟩ =
1

2π
⟨Φℓ,Φk⟩

ϕℓ(t) =
sin
(
π(t−ℓTs)

Ts

)

π(t−ℓTs)
Ts

ϕ0(t) =
sin
(

πt
Ts

)

πt
Ts

Φℓ(ω) = Φ0(ω)e
−iωℓTs
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If you sample at intervals of Ts, the value you get is the value of the original signal.

If you multiply by the unshifted sinc at 0 then you be 0 at c · Ts for all c ∈ Z\{0}. Note that at 0,
it will have value ϕ0(t).

However this pattern holds generally for all ϕℓ(t), where only the sinc that is centered at t = ℓTs

will be non-zero at the Ts integer multiples. This is shown in the image below:

If x ∈ space of signals bandlimited to ωs
2 then the xc(t) =

∞∑

−∞
xc(ℓTs)ϕℓ(t).

{ϕℓ(t)}ℓ=−∞∞ form an orthogonal basis.

If you have taken EE 126 then you may know that ⟨X,Y ⟩ ≜ E[XY ]. You can show this definition
satisfies the least squares solution via the projection property.

18.6 Sampling Continued

Note that the block diagram shown at the start of the class was not completed.

We know (from before):

xz(t) = xc(t)

∞∑

ℓ=−∞
δ(t− ℓTs)

But what is the transform?
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Xz(ω) =
∑

ℓ

xc(ℓTs)δ(t− ℓTs)

=

∞∑

ℓ=−∞
xc(ℓTs)δ(t− ℓTs)

=

∞∑

ℓ=−∞
xc(ℓTs)F{δ(t− ℓTs)}

[
δ(t)

F↔ 1
]

=
∞∑

ℓ=−∞
xc(ℓTs)e

−i(ωTs)ℓ
[
δ(t− ℓTs)

F↔ e−iωℓTs ]
]

=
∞∑

ℓ=−∞
xd(ℓ)e

−i(ωTs)ℓ

= Xd(Ω)
∣∣∣
|Ω=ωTs

[
Xz(ω) = Xd(Ω)

∣∣∣
Ω=ωTs

]

We can note that the units work out:

Ω︸︷︷︸
rad/sample

= ω︸︷︷︸
rad/sec

Ts︸︷︷︸
sec/sample

18.7 Triangle Wave

We can now look at a Triangle wave with period 2B, centered at 0.

Now we expand our horizon to the spectrum of Xd(Ω). Recall that Ω = ωTs.

Xz(ω) = Xd(Ω)
∣∣∣
Ω=ωTs

Xd(Ω) = Xz(ω)
∣∣∣
ω= Ω

Ts

=
1

Ts
Xc(ω)

∣∣∣
ω= Ω

Ts

, |Ω| ≤ π.

Yd(Ω) = Yd(Ω)Hd(Ω) |Ω| ≤ π

=
1

Ts
Xc(ω)

∣∣∣
ω= Ω

Ts

Hd(Ω)
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Now we can send yd(n) and Tr through a Kroneckor-to-Dirac block to get yz(t) =

∞∑

ℓ=−∞
yd(ℓ)δ(t−

ℓTr).

Now we go from Lollipops to Diracs (the inverse of before). Note that this step cannot possibly
lead to any information loss.

If we take the Fourier Transform of yz(t), we get Yz(ω).

Yz(ω) =
∞∑

ℓ=−∞
yd(ℓ)F{δ(t− ℓTr)}

=

∞∑

ℓ=−∞
yd(ℓ)e

−iωℓTr

=

∞∑

ℓ=−∞
yd(ℓ)e

−i(ωTr)ℓ

∴ Yz(ω) = Yd(Ω)
∣∣∣
Ω=ωTr

which gives us the analysis equation for a DT signal!

Passing yz(t) through a low-pass filter yields yc(t).

Yc(ω) = GYd(Ω)
∣∣∣
Ω=ωTr

[Note the gain interpolates]

=
G

Ts
Xcω

∣∣∣
ω= Ω

Ts
=ωTr

Ts

Hd(Ω)
∣∣∣
Ω=ωTr

∴ Yc(ω) =
G

Ts
Xc

(
ωTr

Ts

)
H (ωTr)

18.8 Overall System

Overall, the final end-to-end system is the input xc(t) sent through a C-to-D block with Ts to get
xd(n).

We then pass that into a Hd(Ω) to get yd(n) which we then pass through a D-to-Cs block (with
Tr) to get yc(t).
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18.9 LTI Equivalent Systems

Note that although sampling is not an LTI operation (shifting the input will not lead to shifted
sampled); however there is an LTI equivalent which has the frequency response Hc(ω).

Ts =Tr = T

Yc(ω) =
G

T
Xc(ω)Hd(ωT )

Yc(ω) =
G

T
Hd(ωT )Xc(ω)

18.10 Something fun to do

Hd(Ω) = 1

G = 2Ts

Tr = 2Ts

Yc(ω) =? [Want to find]

Yc(ω) =
G

Ts
Xc

(
ωTr

Ts

)
H (ωTr) [Eqn. from before]

Yc(ω) = 2Xc(2ω)

=⇒ yc(t) = xc(
t

2
)

Here we compress in frequency which dilates in time.

This means that voice is at half the speed, half the pitch.
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19 Tuesday, November 15th

19.1 Z Transform

Today we will learn about the Z Transform which is for discrete time signals. The counterpart for
continuous time signals is the Laplace transform.

19.1.1 Time to wean off the unit circle

We know from before that passing x(n) = eiωn into an LTI system gives out y(n) = H(ω)eiωn.

Q: What if we pass in x(n) = zn = (reiω)n into an LTI system. What do we get then for y(n)?

Using the definition – the exact same way we did for the purely imaginary case – we can say that:

y(n) =
∑

ℓ

h(ℓ)x(n− ℓ)

x(n) = zn =⇒ x(n− ℓ) = zn−ℓ

=⇒ y(n) =
∑

ℓ

h(ℓ)zn−ℓ

=

∞∑

ℓ=−∞
h(ℓ)z−ℓzn

Note that the first part of y(n) =

( ∞∑

ℓ=−∞
h(ℓ)z−ℓ

)

︸ ︷︷ ︸
Ĥ(z)

zn is a function of nothing other than z. It is

not a function of ℓ as we sum over all ℓ.

Therefore, we call Ĥ(z) the transfer function of the system. You will often see this written as:

Ĥ(z) =
∞∑

n=−∞
h(n)z−n

Now we can complete what we were saying before:

Passing in x(n) = zn into an LTI system gives out y(n) = Ĥ(z)zn.
In other words: sending in a complex exponential into an LTI system gives the same complex
exponential scaled by the transfer function.

We call Ĥ(z) the Z Transform of h(n). Most texts will just say H(z) but we add the hat to
avoid confusion when talking about the DTFT (which are denoted as H) along with Z Transforms
(which are denoted here as Ĥ).
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19.2 Region of Convergence

Note: we only define Ĥ(z) ≜
∞∑

n=−∞
h(n)z−n when the sum converges.

Therefore we say that z is in the Region of Convergence (ROC) if

∣∣∣∣∣
∞∑

n=−∞
h(n)z−n

∣∣∣∣∣ <∞

Note that ROCs will always involve the absolute value of z.

19.2.1 Aspects of Convergence

z = reiω

Q: Which aspect of z

• r
• ω

affects convergence?

The answer is r. ω does not affect convergence as it only exists within the term eiω which has
magnitude 1. Or more rigorously:

∣∣∣∣∣
∑

ℓ

h(ℓ)r−ℓe−iωℓ

∣∣∣∣∣ <∞

≡
∑

ℓ

∣∣∣h(ℓ)r−ℓ
∣∣∣
∣∣∣e−iωℓ

∣∣∣ <∞ [Magnitude of prod. = prod. of the magnitudes]

≡
∑

ℓ

∣∣∣h(ℓ)r−ℓ
∣∣∣ <∞

[
|e−iωℓ| = 1

]

Note that the final expression
∑

ℓ

∣∣h(ℓ)r−ℓ
∣∣ <∞ has an r in the LHS which appears in a potentially

problematic manner: if you have an impulse response that is growing, rℓ can contain the growth in
the impulse response if chosen appropriately over an appropriate interval of ℓ.

19.2.2 Example of Convergence

Let’s give an example of choosing such an appropriate interval.
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Say we have a causal system with h(ℓ) = 2ℓ. Then we can reformulate our condition to say that∑∞
ℓ=0

∣∣(2r )ℓ
∣∣ <∞, with the summation bounds following from causality. For this sum to converge,

2
r < 1 =⇒ r > 2. Taming choice example: If we take r = 3, we will see that

∑∞
ℓ=0

∣∣(23)ℓ
∣∣ <∞.

19.2.3 Forms for Regions of Convergence

Regions of Convergence can take on the following shapes, on the complex plane:

• R0 < |z| (sometimes R0 < |z| < ∞ to not include z = ∞): Regions of Convergence can be
outside of some circle with radius R0. Note that R0 = 0 is possible in which case we include
the entirety of the complex plane.

• |z| < R0 (sometimes 0 < |z| < R0 to not include z = 0): Regions of Convergence can be
inside of some circle.

• R0 < |z| < R1: the final possibility is if we have a donut.

19.2.4 Duality of transforms of impulse responses

Note that what we call the transfer function of the system is actually the Z transform of the impulse
response.

Just like when we said that the frequency response of a system is the DTFT of the impulse response.

19.3 Why another Transform?

Note there are signals that don’t have a Fourier Transform (FT) but convolution is still well-defined.

We are familiar with the relationship (involving the DTFT) of sending in some X(ω) into a system
H(ω) to get out Y (ω) = X(ω)H(ω). This however requires two things:

1. the system, H(ω), has a frequency response
2. the input has a DTFT

However let us consider something new:
a system with impulse response h(n) = 2nu(n) where your input is over a finite duration of 2

samples. Specifically x(n) =





1 if n=0

2 if n=1

0 e/w

.

We can see that convolution is well-defined here: y(n) =
∑∞

i=−∞ h(i)x(n− i) =

{
1 n=0

2 n=1
This is due to one of the signals being of finite length duration.

But you cannot talk about a FT since the system doesn’t have a frequency response:
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H(ω) =
∑∞

n=0 2
ne−iωn =

∑∞
n=0(2e

−iω)n but |2e−iω| > 1 so the sum diverges for all ℓp norms (∀p).
So while we do say that h has no DTFT (so we can talk about the system in time – via convolution
– but not in frequency), the system does turn out to have a Z Transform and so does the signal.

19.4 Right-Sided Sequences

Definition:
We say a sequence x is right-sided if x(n) = 0 for all n < N0, ∃N0 ∈ Z.

If we visualize a dot plot across n, then we will see that everything to the left of N0 will be 0 with
lollipops only to the right.

In the case where N0 = 0 then we are looking at a causal function.

19.4.1 Convolution of 2 Right-Sided functions

Q: What if we have 2 right-sided signals x, h and convolve them?

(x ∗ h)(n) =
∞∑

ℓ=−∞
x(ℓ)h(n− ℓ)

We will have to keep one fixed (WLOG we shall keep x(ℓ) fixed here) and flip the other one (to get
h(−ℓ)) and then move it by some constant n to get h(n− ℓ).
When we flip and move the right-sided h, then everything non-zero moves from being to the right
of some point ℓ = M0 to being only non-zero to the left of some different point ℓ = n −M0, with
horizontal dotplot axes ℓ.
Finally we multiply these 2 functions which leads to the following possible outcomes.
Either:

1. n−M0 (which is left-sided) is to the left N0 (which is right-sided) in which case there is no
overlap and the convolution will yield 0.

2. Eventually as we increase n, the right-end of left-sided sequence will slide over the right-sided
sequence and when we have overlap we will multiply pointwise.
This has finite overlap due to the fact that they are extending in different directions and

both sides have a stopping point
(
ℓ = N0 for x(ℓ) and ℓ = n−M0 for h(n− ℓ)

)
.

Finite overlap =⇒ finite output once we’ve pointwise multiplied and summed.

will occur.

97



19.4.2 Example with Right-Sided functions

Let’s say you have some signal x(n) =
(
1
2

)n
u(n). What is the Z Transform of this signal?

Hint: you will need to make use of
∞∑

n=0

αn =
1

1− α
, |α| < 1.

Include constraints on z for when the Z transform is defined: when its summation form converges.

X̂(z) =

∞∑

n=−∞
x(n)z−n [Definition of Z Transform]

=

∞∑

n=−∞

(
1

2

)n

u(n)z−n [Plug in x]

=
∞∑

n=−∞

(
1

2z

)n

u(n) [Combine same exponential terms]

=

∞∑

n=0

(
1

2
z−1

)n

[Use z−1 notation, re-index per unit step]

=
1

1− 1
2z

−1
,

∣∣∣∣
1

2
z−1

∣∣∣∣ < 1 [Use Hint; Introduce ROC constraints]

=
1

1− 1
2z

−1
, |z| > 1

2
[Cleanup ROC constraints]

Therefore we can say that:

x(n) =

(
1

2

)n

u(n)
Z↔ X̂(z) =

1

1− 1
2z

−1
, Rx =

1

2
< |z|

x(n)
Z↔ X̂(z) =

z

z − 1
2

, Rx =
1

2
< |z|

[
Multiply by

z

z

]

19.5 Rational Z Transforms

Note that this happens to be among the class of signals that have rational Z Transforms: This is
rational in z as it can be written as the ratio of 2 polynomials.

Roots of the numerator are called zeros of X̂.
Roots of the denominator are called poles of X̂.

In the above example, we have a zero at z = 0 and a pole at z = 1
2 .

We can give a pole-zero diagram by plotting the poles with X’s and zeros with O’s on the complex
plane. ROCs are bounded by the poles as they can never include poles – this is because poles are
where things “blow up” as they are roots of the denominator. Zeros do not affect the ROC.
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19.6 DTFT Existence from Z Transforms

In this case, we note that ROCx includes the unit circle which tells us that the DTFT exists: Recall
that we define

X̂(z) =
∑

n

x(n)z−n

=
∑

n

x(n)r−ne−iωn [z = reiω]

But if r = 1 is inside the ROC then the above summation converges – as then z = eiω is just
somewhere on the unit circle. We will also notice that the X(ω) =

∑
n x(n)e

−iωn is the analysis
equation for the DTFT as we plug in r = 1.

More formally:

x(n) =

(
1

2

)n

u(n)
F↔ X̂(z) |z=eiω =

1

1− 1
2e

−iω

which we will recall from our Fourier Transform days.

Note that we can only say X̂(z) |z=eiω = X(ω) if the ROC includes the unit circle.

19.7 Z Transforms → DTFT Example

19.7.1 Z Transform with incorrect DTFT

Let us find the Z Transform and then convert it into the DTFT for the signal x(n) = u(n).

X̂(z) =
∑

n

u(n)z−n [Definition of Z Transform]

X̂(z) =

∞∑

n=0

z−n [Re-index summation bounds per unit step]

X̂(z) =

∞∑

n=0

(z−1)n [Introduce z−1 term]

X̂(z) =
1

1− z−1
, Rx = |z−1| < 1 [Geometric Series Convergence]

X̂(z) =
z

z − 1
, Rx = 1 < |z| [Multiply by

z

z
to find zeros/poles]

So we have a zero at z = 0 and a pole at z = 1, so our ROC extends outwards from the unit circle;
however, it does not include the unit circle.
So we cannot say X(ω) = 1

1−eiω
(in fact this is not the transform of the unit step function as

u(n) ̸∈ ℓ1, u(n) ̸∈ ℓ2, u(n) ∈ ℓp =⇒ DTFT must have dirac deltas which we do not have).
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19.7.2 Correct DTFT

The correct DTFT transform is

X(ω) =
1

1− e−iω
+ πδ(ω), ∀(|ω| < π)

with 2π periodicity. Note that 1
2

F↔ πδ(ω) with normalization=1, oscillatory factor=-1 if you wish
to verify with WolframAlpha.

We can wrap the 2π-periodicity in one expression as:

X(ω) =
1

1− e−iω
+ π

∞∑

ℓ=−∞
δ(ω − 2πℓ), ∀ω

19.8 Inverse Transforming

! Note that there is an inverse Z Transform that we are going to treat as radioactive as it requires
immense knowledge of Complex Analysis, Contour Integration, etc.

Therefore the inverse transforming that we do – for both Z Transforms as well as Laplace Transforms
– will be limited to transform properties and known Z transform pairs.

19.9 Same but Different Z Transforms

Given q(n) = −
(
1
2

)n
u(−n − 1), we know that q(n) is non-zero for −n − 1 ≥ 0 or n ≤ −1. This

is important to take care of as otherwise the unit step function will make q = 0. Therefore it is
non-zero for the first time at n = −1, with value q(−1) = −2 or q(−1) = −

(
1
2

)−1
. Then at the

next time step n = 2, we will maintain our negative sign but we shall grow our magnitude to have
q(−2) = −

(
1
2

)−2
. And for all future negative timesteps, q will continue to grow exponentially.

Since the q is of exponential growth, we know that there will be no DTFT. This means that the
ROCq must not include the unit circle. Finding the Z Transform:

Q̂(z) = −
−1∑

n=−∞

(
1

2

)n

z−n [Re-index summation per modified unit step]

= −
∞∑

ℓ=1

(
1

2

)−ℓ

zℓ [Change of variables: ℓ = −n]

= −
∞∑

ℓ=1

(2z)ℓ = −
( ∞∑

ℓ=0

(2z)ℓ − 1

)
[Combine, re-index]
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This means we have

Q̂(z) =
2z

2z − 1
, |z| < 1

2

Q̂(z) =
1

1− 1
2z

−1
, |z| < 1

2

for our Z Transform, with the ROC being the exclusive circle extending inwards of radius 1
2 .

Combining with the earlier found Z transform{u(n)}, we get that:

1

1− 1
2z

−1

Z↔
{(

1
2

)n
u(n) if |z| > 1

2

−
(
1
2

)n
u(−n− 1) if |z| < 1

2

Note that the first case is stable – as it contains the unit circle – while the latter is not.

Looking at the pole-zero diagram, we see that the diagram is the same:
either way we have a zero at z = 0 and a pole at z = 1

2 . However the ROCs are different.

19.10 Generalizations from Causality to left/right-sided

where an Infinite Right-sided Signal is Causal if the ROC includes ∞ and likewise for a Left-sided
signal and the origin.

19.10.1 Proof of Causal Extending

For some causal signal x(n) we know that any R1 ∈ ROCx will make the Z Transform converge by
definition of the ROC (Region of Convergence).
Likewise since R1 is in the ROC, we know it must be greater than the outermost.

So if

X̂(R1e
iω) =

∞∑

n=0

x(n)R−n
1 e−iωn

converges, then we know that any R2 such that R2 > R1 will only make the summation converge
faster. We can induct upon this idea and see there is no outer boundary to the radius.
∴ X̂(R2e

iω) certainly converges: if R1 makes the sum converge then R2 can too.
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19.10.2 Relationship between Time and Transform

Note that the outermost pole is the pole that decays fastest and the “dominant poles” are the ones
that decay slowest – the ones that are away from the boundary.

19.10.3 Non-Causal Right-sided signals

An example of such a signal lies within some signal y(n) =
(
1
2

)n+1
u(n + 1) = x(n + 1). We can

see that this signal y starts at n = −1 and then for all future timesteps (n = 0, 1, 2, . . .), we see y
decay.

Finding the Z Transform:

Ŷ (z) =
∞∑

n=−1

y(n)z−n

= z︸︷︷︸
y(−1)(z−1)−1

+
1

2︸︷︷︸
y(0)(z−1)0

+ ∗ z−1 +□z−1 + · · ·

where the ∗ and □ coefficient terms are irrelevant garbage.

As z → ∞, the first term blows up. Even though we have a right-sided signal, the very first term
(aka one lollipop on the dotplot which causes problems) leads to us not being causal.

Therefore the ROCy = 1
2 < |z| <∞ where we exclude infinity to denote that we are not causal.

19.10.4 Anti-Causal and Left-sided signals

If you have an anti-causal signal you grow inwards including the origin.

But left-sided signals that are not anti-causal go all the way to the origin but do not include it.

You will see more nuances of this in the homework: problem set 10.

19.11 RoC Causality and Left/Right-sidedness Summary

• Causal RoC: R0 < |z|
• Right-sided but not causal RoC: R0 < |z| <∞
• Anti-causal RoC: |z| < R0

• Left-sided but not anti-causal RoC: 0 < |z| < R0

Q: Is the exclusion of 0 important as it means the constant signals cannot be included?

A: No, constant signals are |z| = 1.
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19.11.1 Anti-Causality vs Non-Causality

Anti-Causal (h(n) = 0,∀n > 0) is always one-sided whereas non-causal can also be two-sided (donut
shaped RoCs).

19.12 Mixing Z Transforms

Anytime you mix Z Transforms, you have to make sure the RoCs have a non-trivial overlap.
Otherwise, one or the other is not convergent.

19.12.1 Mixing Z Transforms Example

x(n) =

(
1

2

)n

u(n)− 2nu(−n− 1)

x(n)
Z↔ 1

1− 1
2z

−1
+

1

1− 2z−1

ROC =
1

2
< |z| ∩ |z| < 2

X̂(z) =
z

z − 1
2

+
z

z − 2

=
2z(z − 5

4)

(z − 1
2)(z − 2)

[Common denominator → factor]

ROC =
1

2
< |z| < 2

This is a non-causal (or 2-sided) decaying exponential signal.

Sanity Check: Since each of the 2 parts of x(n) is absolutely summable (as they are decaying
exponentials), we know that the ROC must include the unit circle which it does!

19.13 Convolution in Time

Let us feed in x(n) = zn to system h(n) (which internally is a composition of f(n) sent into a g(n))
to get out y(n) = Ĥ(z)zn.

This means that zn is also an eigenfunction of an LTI system, just like eiω was but now you are
not restricted to being on the unit circle.

Breaking it down, step-by-step, we see that:
f(n) gives out F̂ (z)zn

which is sent to g(n) which gives out y(n) = F̂ (z)Ĝ(z)zn.
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Pattern matching to before, we see that Ĥ(z) = F̂ (z)Ĝ(z).

Big idea: Convolution in Time 7→ Multiplication in the Transform domain (just like with FT).

19.14 Generalization of Convolution in Time

If we pass x(n) into a system h(n) to get y(n) = (x ∗ h)(n).

Then Ŷ (z) = X̂(z)Ĥ(z) =⇒ Ĥ(z) = Ŷ (z)

X̂(z)
.

19.15 Time-Shift Property

For a signal x(n) with a Z Transform, let us define y(n) ≜ x(n−N).

This shall have Z Transform: Ŷ (z) = X̂(z)z−N which you know from you incredible EE120 Prof!

Ŷ (z) =
∑

n

x(n−N)z−n [Definition of Z Transform]

=
∑

ℓ

x(ℓ)z−(ℓ+N) [Change of Variables: ℓ = n−N =⇒ n = ℓ+N ]

=
∑

ℓ

x(ℓ)z−ℓz−N

This is why we saw delay blocks written as z−1. □
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20 Thursday, November 17th

20.1 Z Transform (Continued)

Today we will continue our journey through the Z Transform.

Last time we ended with the Time-Shift Property:

x(n)
Z↔ X̂(z)

x(n−N)
Z↔ z−NX̂(z)

If N > 0, then the RHS of the 2nd line can be written as → X̂(z)
zN

.

! Q: What could potentially go wrong?

A: You could have a pole at z = 0, which gets canceled out with the numerator thus leading to the
loss of a solution – note that this depends on what X̂(z) is.

If N < 0, then we could potentially lose ∞ from the RoC.

Example N = −1: u(n+ 1)
Z↔ z2

z−1 , 1 < |z| <∞ where we exclude z =∞ as we diverge there.

20.2 Time-Reversal Property

Given x(n)
Z↔ X̂(z) =

∑

n

x(z)z−n, let us define the time reversed x as xTR(n) ≜ x(−n).

Find the Z Transform of xTR(n).

X̂TR(z) =
∑

n

x(−n)z−n

=
∑

ℓ

x(ℓ)zℓ [Change of Variables: ℓ = −n]

=
∑

ℓ

x(ℓ)(z−1)−ℓ

= X̂
(
z−1
)

Let us say that the ROC for x is Rx = {z ∈ C
∣∣∣ r1 < |z| < r2}.

Then RxTR = {z ∈ C
∣∣∣ r1 < |z−1| < r2} = {z ∈ C

∣∣∣ 1
r1

< |z| < 1
r2
}.

Graphically we can see that the pole-zero plots of x(n) as well as that of xTR(n) are both two-sided.
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20.3 Multiplication by a complex expon.

Given x(n)
Z↔ X̂(z) =

∑

n

x(z)z−n, let us define the signal q(n) ≜ zn0 x(n).

Find the Z Transform and RoC of this signal.

Q̂(z) =
∑

n

zn0 x(n)z
−n

=
∑

n

x(n)

(
z

z0

)−n

= X̂

(
z

z0

)

where z0 = r0e
iω0 .

Since Rx = {z ∈ C
∣∣∣ r1 < |z| < r2},

we have Rq = {z ∈ C
∣∣∣ r1 <

∣∣∣ zz0
∣∣∣ < r2} = {z ∈ C

∣∣∣ r1 < |z|
r0

< r2} = {z ∈ C
∣∣∣ r0r1 < |z| < r0r2}.

Note that if |z0| > 1 then you will have an expansion between the two circles that the RoC sits.

Note that if |z0| < 1 then you will have a contraction between the two circles that the RoC sits.

20.4 Suddenly-Applied Sinusoidal Excitation (SASE)

Find the Z Transform of r(n) = cos(ω0n)u(n).

We can start by actually simplifying: r(n) = cos(ω0n)u(n) =
1
2e

iω0nu(n) + 1
2e

−iω0nu(n).

If we let z0 = eiω0 , we can use the fact that u(n)
Z↔ Û(z) = z

z−1 , 1 < |z|
as well as the fact that q(n) = zn0 x(n)

Z↔ Q̂(z) = X̂
(

z
z0

)
,

we can then realize zn0 u(n) = eiω0nu(n)
Z↔ Û

(
z
z0

)
= Û

(
z

eiω0

)
=

z

eiω0
z

eiω0
−1 = e−iω0z

e−iω0z−1
.

Likewise, z−n
0 u(n) = e−iω0nu(n)

Z↔ Û
(

z
e−iω0

)
= eiω0z

eiω0z−1

R̂(z) =
1

2

[
e−iω0z

e−iω0z − 1
+

eiω0z

eiω0z − 1

]

=
1

2

[
z

z − eiω0
+

z

z − e−iω0

] [
Multiply by ±eiω0

eiω0

]

=
z

2

[
1

z − eiω0
+

1

z − e−iω0

]
[Pull the z out]

=
z

2

[
z − e−iω0 + z − eiω0

(z − eiω0)(z − e−iω0)

]
[Common Denominator]

R̂(z) =
z(z − cos(ω0))

(z − eiω0)(z − e−iω0)

[
cos(ω0) =

eiω0 + e−iω0

2

]
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The Pole-Zero diagram will have zeros at z = 0, cos(ω0) and poles on the unit circle at z =
eiω0 , e−iω0 , one rotated by an angle of +ω0 and the other rotated by −ω0.
Note that this statement assumes that ω0 is positive.

Because this system is causal, the RoC will extend outwards form the unit circle.

Note that if z = ξ0 is a zero of the original function, now z
eiω0

= ξ0 is a zero of z = ξ0e
iω0 .

20.5 Uniqueness of the Z Transform

If you are told that the Z Transform is rational then it is unique up to a constant factor, H0:

Ĥ(z) = H0

∏

xi∈Z
(z − xi)

∏

p∈P
(z − p)

(4)

where Z is the set of zeros and P is the set of poles.

In the homework, you shall work with this much more. If I tell you that the DC Gain of a Filter is

1, you know that the transfer function Ĥ(z) |z=1 = 1 as ei0 = 1
Z↔ z = 1. Then you can solve for

the constant H0 by setting (4), evaluated at the DC Gain, to 1.

20.6 DT-LTI System Example Questions

Consider a DT-LTI filter H that is causal and has a rational Ĥ(z), with

x(n) = 1→ H → y(n) = −4
3 .

The pole-zero diagram has poles at z = −1
2 ,

3
4 , and a zero at z = 3

2 .

Questions:

1. Warmup: Is H BIBO stable?
2. What is Ĥ(z) (and then find h(n) from it).

Answers:

1. First let us find the RoC. Since H is causal (or right-sided), we know that the RoC extends

outwards from the outer most pole. This leads to Rh = {z ∈ C
∣∣∣34 < |z|}. Therefore we know

H is BIBO stable as the unit circle is included in the RoC.

2. Ĥ(z) = A
z− 3

2

(z+ 1
2
)(z− 3

4
)
, 3

4 < |z| where A is some scaling factor.
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20.6.1 Finding the Unique Z Transform

We can find A using the fact that x(n) = 1 = zn0 → H → y(n) = −4
3 is analogous to:

x(n) = zn0 → Ĥ(z) → y(n) = Ĥ (z0) z
n
0 .

x(n) = 1 = zn0 for z0 = 1, therefore Ĥ(1) = −4
3 .

Ĥ(z) = A
z − 3

2

(z + 1
2)(z − 3

4)
[Original Z Transform]

Ĥ(1) = A
1− 3

2

(1 + 1
2)(1− 3

4)
= −4

3
[Plug in z = 1 to use the known value of Ĥ(1)]

−4

3
= A

1− 3
2

(1 + 1
2)(1− 3

4)
= −4A

3

4A

3
=

4

3
=⇒ A = 1

20.6.2 Finding the Impulse Response

Let us simplify the task of finding h(n), let us start by finding h(0).

Here’s a hint to do so:

Ĥ(z) =
∞∑

n=0

h(n)z−n [Definition of Z Transform for Causal System]

Ĥ(z) = h(0) + h(1)z−1 + h(2)z−2 + · · ·
=⇒ lim

z→∞
Ĥ(z) = h(0) [Zero out all the terms after h(0)]

lim
z→∞

Ĥ(z) = 0 [order(denom{Ĥ}) > order(numer{Ĥ})]

as order(denominator{Ĥ(z)}) = 2, order(numerator{Ĥ(z)}) = 1 and 2 > 1.

20.7 Initial Value Theorem

If a signal or function h is causal – if h(n) = 0, n < 0 – then we can find the initial value as such:
lim
z→∞

Ĥ(z) = h(0).

Note that casual is a term for systems so we are currently abusing terminology – we simply mean
that the signal is 0 on the left-side of the origin.
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20.8 Impulse Response from a Z Transform

To find h(n), we will need to revisit our Calculus days to utilize Partial Fraction Decomposition:

Ĥ(z) =
z − 3/2

(z + 1/2)(z − 3/4)
=

α

z + 1/2
+

β

z − 3/4

=
z − 3/2

(z + 1/2)(z − 3/4)
=

(α+ β)z + (β2 − 3α
4 )

(z + 1/2)(z − 3/4)
[Common Denominator]

=⇒ α+ β = 1,
β

2
− 3α

4
= −3

2
[Pattern-match like-terms]

=⇒ α =
8

5
, β = −3

5
[Solve the system]

Therefore,

Ĥ(z) =
8

5

1

z + 1
2

− 3

5

1

z − 3
4

[PFD form with respective α, β]

=
8

5
z−1

(
z

z − −1
2

)
− 3

5
z−1

(
z

z − 3
4

)

h(n) =
8

5
z−1

(
−1

2

)n

u(n) − 3

5
z−1

(
3

4

)n

u(n) [† : λ1 = −
1

2
, λ2 =

3

4
]

h(n) =
8

5

(
−1

2

)n−1

u(n− 1) − 3

5

(
3

4

)n−1

u(n− 1) [Delay by one sample]

† as λnu(n)
Z↔ 1

1−λz−1 = z
z−λ , |λ| < |z|.

Sanity Check: h(0) = 0 is satisfied – due to the unit step functions!

20.9 Differentiation in z

Given x(n)
Z↔ X̂(z), show that nx(n)

Z↔ −z dX̂(z)
dz .

X̂(z) =
∑

n

x(n)z−n

dX̂(z)

dz
= −

∑

n

nx(n)z−n−1 [Differentiate both sides]

−zdX̂(z)

dz
=
∑

n

nx(n)︸ ︷︷ ︸ z
−n

︸ ︷︷ ︸
Z{nx(n)}

[Multiply both sides by −z]

20.10 Impulse Response from Z Transforms with Differentiation

Given Q̂(z) = z
(z−1)2

, what is q(n)?
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We know that u(n)
Z↔ z

z − 1︸ ︷︷ ︸
Û(z)

which can take the derivative of:

dÛ(z)

dz
= �z − 1��−z

(z − 1)2
=

−1
(z − 1)2

[Differentiate Z{u(n)} wrt z]

−zdÛ(z)

dz
=

z

(z − 1)2
= Q̂(z) [Multiply both sides by −z]

Therefore using the differentiation property we just proved above, q(n) = nu(n).

If we were to look at the dotplot of this, we would see a discrete ReLU: 0 (∀n ≤ 0) and n (∀n ∈ Z+).

20.11 DT-LTI Systems Described by LCCDEs

a0y(n) + a1y(n− 1) + · · ·+ aNy(n−N) = b0x(n) + b1x(n− 1) + · · ·+ bMx(n−M)

N∑

k=0

aky(n− k) =
M∑

m=0

bmx(n−m)

Take the Z Transform of both sides, use the Time-Shift Property:

N∑

k=0

akŶ (z)z−k =

M∑

m=0

bmX̂(z)z−m

[
N∑

k=0

akz
−k

]
Ŷ (z) =

[
M∑

m=0

bmz−m

]
X̂(z)

[
N∑

k=0

akz
−k

]
Ŷ (z)

X̂(z)
=

[
M∑

m=0

bmz−m

]

Ĥ(z) = Ŷ (z)/X̂(z)

Ĥ(z) =

∑M
m=0 bmz−m

∑N
k=0 akz

−k

=
b0 + b1z

−1 + · · ·+ bMz−M

a0 + a1z−1 + · · ·+ aNz−N

Big Idea: Any DT-LTI Systems Describable by an LCCDE has a rational transfer function.
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20.12 Feedback Stabilization

=⇒

Reformulating the left system as the right, we can say that Ĥ(z) = P̂ (z)

1+K̂(z)P̂ (z)
.

p(n) = 2nu(n)

is exponential growth so not only is not BIBO stable, but it also does not have a DTFT – it is
faster than polynomial growth.

P̂ (z) =
1

1− 2z−1
=

z

z − 2
, 2 < |z| as λnu(n)

Z↔ 1

1− λz−1
=

z

z − λ
, |λ| < |z|

20.13 Shift Register with Gain Factors

k(n) = αδ(n− 1)

can be seen as a Shift Register with Gain Factor = α.

This signal has the following Z Transform:

K̂(z) = αZ{δ(n− 1)} δ(n)
Z↔
∑

n

δ(n)z−n = 1

=⇒ K̂(z) = αz−1 δ(n− 1)
Z↔
∑

n

δ(n− 1)z−n = z−1

=⇒ Ĥ(z) =
z

z − (2− α)

=
1

1− (2− α)z−1

=⇒ h(n) = (2− α)nu(n), |2− α| < 1.

with a zero at the origin and a pole at z = 2− α.

We want −1 < 2− α < 1 which is the same as saying 1 < α ∩ α < 3 or 1 < α < 3 . □
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21 Tuesday, November 22th

21.1 Steady-State/Transient Response

Today we will start with one way of splitting the output of a system.
Specifically we will split this into a component that persists in time – steady-state – and a component
that dies out.

Given the following difference equation:

y(n) = αy(n− 1) + x(n) |α| < 1

x(n) = u(n) System is initially at rest

Ŷ (z) = X̂(z)Ĥ(z)

Ŷ (z) = αz−1Ŷ (z) + X̂(z) =⇒ (1− αz−1)Ŷ (z) = X̂(z)

Ĥ(z) =
Ŷ (z)

X̂(z)
=

1

1− αz−1
=

z

z − α
, |α| < |z|

Ŷ (z) =
z

z − 1

z

z − α

= z

[
1

z − 1

z

z − α

]
= z

[
z

(z − 1)(z − α)

]

=
A

z − 1
+

B

z − α

=
1

1− α︸ ︷︷ ︸
A

1

z − 1
− α

1− α︸ ︷︷ ︸
B

1

z − α

∴ Ŷ (z) = z

[
z

(z − 1)(z − α)

]

=
1

1− α

1

z − 1
− α

1− α

1

z − α
, 1 < |z|

Z−1 ↓

y(n) =
1

1− α
u(n)

︸ ︷︷ ︸
ySS(n)persists

− α

1− α
αnu(n)

︸ ︷︷ ︸
yTR(n)

lim
n→∞

yTR(n) = 0

where we work entirely in the z-domain.

The ROC of the system expands outwards from z = α and the unit step has ROC of 1 < |z| which
leads to a non-trivial overlap.

Although we do not see it here, note that a pole/zero cancellation can actually make the ROC of
the mixed transform be greater than the minimal intersection.
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Q: What’s the response of the system to x(n) = 1 ∀n ∈ Z?

Hint:

βnu(n)
Z↔ 1

1− βz−1
, |β| < |z|

A: If we plug in zn0 = 1 to our system then we get Ĥ(z) = z
z−α , |α| < |z| to get output 1

1−α .

Note that this is the same as lim
n→∞

y(n) =
1

1− α
.

What’s the response to the input x(n) = cos(ω0n)u(n)?

x(n) =
1

2
eiω

n
0 u(n) +

1

2
e−iω0nu(n)

βnu(n)→ h(n) = αnu(n) → Aβnu(n) +Bαnu(n)

Everything in this lecture so far has assumed that the system is initially at rest.

21.2 Systems not initially at rest

Given a Causal, BIBO Stable, System. Note that we do not care about the history before the initial
state as the initial state tells us all we need to know:

y(n) = αy(n− 1) + x(n), |α| < 1

y(−1) ̸= 0; x(n) = 0, n ≥ 0

y(0) = αy(−1)
y(1) = αy(0) = α2y(−1)
y(2) = αy(1) = α3y(−1)

=⇒ yZIR(n) = αn+1y(−1)
Now, let y(−1) = 0, x(n) = u(n)

yZSR(n) =
1

1− α
u(n)− α

1− α
αnu(n)
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What’s the response if y(−1) ̸= 0 & x(n) = u(n)?

y(n) = yZIR(n) + yZSR(n)

= αn+1y(−1)︸ ︷︷ ︸
yZIR(n)

+
1

1− α
u(n)− α

1− α
αnu(n)

︸ ︷︷ ︸
yZSR(n)

y(n) = αy(n− 1) + x(n)

y(n)u(n) = αy(n− 1)u(n) + x(n)u(n)
∞∑

n=−∞
y(n)u(n)z−n = α

∞∑

n=−∞
y(n− 1)u(n)z−n +

∞∑

n=−∞
x(n)u(n)z−n

∞∑

n=0

y(n)z−n = α
∞∑

n=−0

y(n− 1)z−n +
∞∑

n=0

x(n)z−n

ŷ(z) = α

∞∑

n=−0

y(n− 1)z−n + x̂(z) [Unilateral Z Transform]

Lemma:
∞∑

n=0

y(n− 1)z−n =
∞∑

m=−1

y(m)z−(m+1) = y(−1) + z−1ŷ(z) [Change of Variables]

[m = n− 1 =⇒ n = m+ 1]

ŷ(z) =
αy(−1)
1− αz−1

+
x̂(z)

1− αz−1

= αy(−1) 1

1− αz−1
+ x̂(z)

1

1− αz−1

ŷ(z) = αy(−1)Ĥ(z) + x̂(z)Ĥ(z)︸ ︷︷ ︸
Done Before

y(n) = αy(−1)h(n)+ [h(n) = αnu(n)]

y(n) = αy(−1)αnu(n) +
1

1− α
u(n)− α

1− α
αnu(n)

21.3 Zero-Input Response/Zero-State Response

See lecture notes below.

21.4 Equilization

See lecture notes below.
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22 Appendix

22.1 Discrete Fourier Series (DFS)

Complex exponential Fourier series synthesis and analysis equations for a periodic discrete-time
signal having period p :

x(n) =
∑

k=⟨p⟩

Xke
ikω0n ←→ Xk =

1

p

∑

n=⟨p⟩

x(n)e−ikω0n,

where ω0 = 2π
p and ⟨p⟩ denotes a suitable discrete interval of length p (i.e., an interval containing

p contiguous integers). For example,
∑

k=⟨p⟩ may denote

p−1∑

k=0

or

p∑

k=1

.

22.2 Continuous-Time Fourier Series (FS)

Complex exponential Fourier series synthesis and analysis equations for a periodic continuous-time
signal having period p:

x(t) =
∞∑

k=−∞
Xke

ikω0t ←→ Xk =
1

p

∫

⟨p⟩
x(t)e−ikω0tdt

where ω0 = 2π
p and ⟨p⟩ denotes a suitable continuous interval of length p. For example,

∫

⟨p⟩
can

denote

∫ p

0
.

22.3 Transfer Function and Frequency Response of a DT LTI System

Consider a real, discrete-time LTI system having impulse response h : Z→ R. The transfer function
Ĥ : C→ C of the system is given by:

Ĥ(z) =

∞∑

n=−∞
h(n)z−n, ∀z ∈ RoC(h).

If the system is stable, its frequency response H : R→ C is given by:

H(ω) =

∞∑

n=−∞
h(n)e−iωn, ∀ω ∈ R.

The impulse response of the system is given by:

h(n) =
1

2π

∫

⟨2π⟩
H(ω)eiωndω.
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22.4 Transfer Function and Frequency Response of a CT LTI System

Consider a real, continuous-time LTI system having impulse response h : R → R. If the system is
stable, its frequency response H : R→ C is given by:

H(ω) =

∫ ∞

−∞
h(t)e−iωtdt, ∀ω ∈ R.

The impulse response of the system is given by:

h(t) =
1

2π

∫ ∞

−∞
H(ω)eiωtdω.
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22.5 Properties of the DTFT

x(n) =
1

2π

∫

⟨2π⟩
X(ω)eiωndω ←→ X(ω) =

∞∑

n=−∞
x(n)e−iωn

Time domain Frequency domain

∀n ∈ Z, x(n) is real ∀ω ∈ R, X(ω) = X∗(−ω)

∀n ∈ Z, x(n) = x∗(−n) ∀ω ∈ R, X(ω) is real

∀n ∈ Z, y(n) = x(n−N) ∀ω ∈ R, Y (ω) = e−iωNX(ω)

∀n ∈ Z, y(n) = eiω1nx(n) ∀ω ∈ R, Y (ω) = X (ω − ω1)

∀n ∈ Z,
y(n) = cos (ω1n)x(n)

∀ω ∈ R,
Y (ω) = (X (ω − ω1) +X (ω + ω1)) /2

∀n ∈ Z,
y(n) = sin (ω1n)x(n)

∀ω ∈ R,
Y (ω) = (X (ω − ω1)−X (ω + ω1)) /2i

∀n ∈ Z,
x(n) = ax1(n) + bx2(n)

∀ω ∈ R
X(ω) = aX1(ω) + bX2(ω)

∀n ∈ Z, y(n) = (h ∗ x)(n) ∀ω ∈ R, Y (ω) = H(ω)X(ω)

∀n ∈ Z, y(n) = x(n)p(n) ∀ω ∈ R,
Y (ω) = 1

2π

∫ 2π
0 X(Ω)P (ω − Ω)dΩ

∀n ∈ Z,

y(n) =

{
x(n/N) n is a multiple of N

0 otherwise

∀ω ∈ Z,
Y (ω) = X(NΩ)
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22.6 Properties of the CTFT

Time domain Frequency domain

∀t ∈ R, x(t) is real ∀ω ∈ R, X(ω) = X∗(−ω)

∀t ∈ R, x(t) = x∗(−t) ∀ω ∈ R, X(ω) is real

∀t ∈ R, y(t) = x(t− τ) ∀ω ∈ R, Y (ω) = e−iωτX(ω)

∀t ∈ R, y(t) = eiω1tx(t) ∀ω ∈ R, Y (ω) = X (ω − ω1)

∀t ∈ R,
y(t) = cos (ω1t)x(t)

∀ω ∈ R,
Y (ω) = (X (ω − ω1) +X (ω + ω1)) /2

∀t ∈ R,
y(t) = sin (ω1t)x(t)

∀ω ∈ R,
Y (ω) = (X (ω − ω1)−X (ω + ω1)) /2i

∀t ∈ R,
x(t) = ax1(t) + bx2(t)

∀ω ∈ R
X(ω) = aX1(ω) + bX2(ω)

∀t ∈ R, y(t) = (h ∗ x)(t) ∀ω ∈ R, Y (ω) = H(ω)X(ω)

∀t ∈ R, y(t) = x(t)p(t) ∀ω ∈ R,
Y (ω) = 1

2π

∫∞
−∞X(Ω)P (ω − Ω)dΩ

∀t ∈ R,
y(t) = x(at)

∀ω ∈ R,
Y (ω) = 1

|a|X(Ω/a)
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22.7 Properties of the Z Transform

Time Domain
∀ n ∈ Z

Transform Domain
∀ z ∈ RoC

RoC Name

w(n) = ax(n) + by(n) Ŵ (z) = aX̂(z) + bŶ (z) RoC(w) ⊃
RoC(x) ∩ RoC(y)

Linearity

y(n) = x(n−N) Ŷ (z) = z−N X̂(z) RoC(y) = RoC(x) Delay

y(n) = (x ∗ h)(n) Ŷ (z) = X̂(z)Ĥ(z) RoC(y) ⊃
RoC(x) ∩ RoC(h)

Convolution

y(n) = x∗(n) Ŷ (z) = [X̂(z∗)]∗ RoC(y) = RoC(x) Conjugation

y(n) = x(−n) Ŷ (z) = X̂(z−1) RoC(y) =
{z | z−1 ∈ RoC(x)}

Time reversal

y(n) = nx(n) Ŷ (z) = −z d
dz X̂(z) RoC(y) = RoC(x) Scaling by n

y(n) = a−nx(n) Ŷ (z) = X̂(az) RoC(y) =
{z | az ∈ RoC(x)}

Exponential
scaling

x(n) = 0, ∀n < 0 lim
z→∞

X̂(z) = x(0) Outside the outermost
pole, out to, and
including, +∞

Initial Value
Theorem

Table 5: Properties of the Z transform. In this table, a, b are complex constants, and
N is an integer constant.

7
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22.8 Common DTFTs

Signal DTFT

∀ n ∈ Z, x(n) = δ(n) ∀ ω ∈ R, X(ω) = 1

∀ n ∈ Z,
x(n) = δ(n−N)

∀ ω ∈ R, X(ω) = e−iωN

∀ n ∈ Z, x(n) = K ∀ ω ∈ R,
X(ω) = 2πK

∞∑
k=−∞

δ(ω − k2π)

∀ n ∈ Z,

x(n) = anu(n), |a| < 1

∀ ω ∈ R,

X(ω) =
1

1− ae−iω

∀ n ∈ Z,

x(n) =

{
1 if |n| ≤M
0 otherwise

∀ ω ∈ R,

X(ω) =
sin(ω(M + 0.5))

sin(ω/2)

∀ n ∈ Z,

x(n) =
sin(Wn)

πn
, 0 < W < π

∀ ω ∈ [−π, π],

X(ω) =

{
1 if |ω| ≤W
0 otherwise

Table 2: Discrete time Fourier transforms of key signals. The function u is the unit
step.

4
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22.9 Common CTFTs

Signal CTFT

∀ t ∈ R, x(t) = δ(t) ∀ ω ∈ R, X(ω) = 1

∀ t ∈ R, x(t) = δ(t− τ), τ ∈ R ∀ ω ∈ R, X(ω) = e−iωτ

∀ t ∈ R, x(t) = K ∀ ω ∈ R, X(ω) = 2πKδ(ω)

∀ t ∈ R,

x(t) = atu(t), 0 < a < 1

∀ ω ∈ R,

X(ω) =
1

jω − ln(a)

∀ t ∈ R,

x(t) =

{
π/a if |t| ≤ a
0 otherwise

∀ ω ∈ R,

X(ω) =
2π sin(aω)

aω

∀ t ∈ R,

x(t) =
sin(πt/T )

πt/T
,

∀ ω ∈ R,

X(ω) =

{
T if |ω| ≤ π/T
0 otherwise

Table 4: Continuous time Fourier transforms of key signals. The function u is the
unit step.

6
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22.10 Common Z Transforms

Discrete-time signal
∀ n ∈ Z

Z transform
∀ z ∈ RoC(x)

RoC(x) ⊂ C

x(n) = δ(n−M) X̂(z) = z−M C

x(n) = u(n) X̂(z) = z
z−1

{z | |z| > 1}

x(n) = anu(n) X̂(z) = z
z−a

{z | |z| > |a|}

x(n) = anu(−n) X̂(z) = 1
1−a−1z

{z | |z| < |a|}

x(n) = cos(ω0n)u(n) X̂(z) = z2−z cos(ω0)
z2−2z cos(ω0)+1

{z | |z| > 1}

x(n) = sin(ω0n)u(n) X̂(z) = z sin(ω0)
z2−2z cos(ω0)+1 ,

{z | |z| > 1}

x(n) =
1

(N−1)! (n− 1) · · · (n−N +1)

an−Nu(n−N)

X̂(z) = 1
(z−a)N

{z | |z| > |a|}

x(n) =
(−1)N

(N−1)! (N − 1−n) · · · (1−n)

an−Nu(−n)

X̂(z) = 1
(z−a)N

{z | |z| < |a|}

Table 6: Z transforms of key signals. The signal u is the unit step, δ is the Kronecker
delta, a is any complex constant, ω0 is any real constant, M is any integer constant,
and N > 0 is any integer constant.
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