
Classification
k-Nearest Neighbors
kNNs are bounded by ≤ 2x the Bayes optimal error,
N, k →∞, k/N → 0.
Edge Case 2 pts w/ same features but diff classes.
Robustness Generalizes better to test data.
Fit Better training classification.
Validation Hold back data subset as validation set.

Train multiple times w/ diff hyperparams.
Choose what is best on validation set.

Training Set Used to learn model weights.
Validation Set Tunes hyperparameters (ex. k ∈ kNN).
Test Set used as FINAL evaluation of model.
Isocontour of f Lc = {x | f(x) = c}, with isovalue c.
Isotropic Gaussian Same var in ea dir: Σ = cI.
Anisotropic Gaussian Allows diff amnts of var along diff dirs, Σ ≻ 0.

Perceptron

Model/rule: 1 if X⃗i · w⃗ ≥ 0 elif X⃗i · w⃗ ≤ 0 =⇒ -1.
Loss: L(z, yi) = 0 if yiz ≥ 0 else −yiz, (z=pred, yi=true ans).

R(w) =

n∑
i=1

L (Xi · w, yi) =
∑
i∈V

−yiXi · w

Gives some linear boundary; if data is linearly separable, correctly

classifies all data in at most O
(

r2

γ2

)
iterations.

Support Vector Machines
Hard-Margin: min

w⃗,b
∥w⃗∥22, s.t. yi(w⃗

⊤x⃗i − b) ≥ 1 ∀i

Fails w/ non-linearly sep. data. Margin size = 1
∥w∥ , Slab size = 2

∥w∥

Hyperplane H = {x : w · x = −α}
flat, infinite, dim(d− 1) plane

x, y ∈ H w⃗ · (y − x) = 0, w⃗ is normal vec of H.
Support Vectors Examples needed to find f(x) ∈ SVM.

Examples with non-0 weight αk ∈ SVM.

Soft-Margin
Allows misclassifications: minw⃗,b,ξi

1
2
∥w⃗∥2 + C

∑n
i=1 ξi s.t.

yi(w⃗
⊤x⃗i − b) ≥ 1− ξi, ∀i; ξi ≥ 0, ∀i

Small C: maximize margin, underfitting, less sensitive, more flat.
Big C: minimize margin, overfitting, very sensitive, more sinuous.
C →∞ =⇒ Soft-Margin → Hard-Margin. Note C ≥ 0.

Generative
Want to learn everything about data before you classify:
the priors π̂i = Pr(Y = Ci) and cond. dist P(X|Y = Ci).

Posterior: P(Y = Ci|X) =
P(X|Y =Ci)·P(Y =Ci)

P(X)

Logistic
Function:

1
1+e−h(x) , where h(x) is linear in terms of features. True

in LDA but not QDA (where h(x) is quadratic).
GDA: Assumes each class models a Gaussian distribution.

QC(x) = − ∥x−µC∥2

2σ2
C

− d lnσC + lnπC =

ln
(√

2π
d
fC(x)πC

)
= − 1

2
(x− µC)⊤Σ−1

C (x− µC)

QDA: Works with any number of classes;
d(d+3)

2
+ 1 params.

LDA: when variances are equal; d+ 1 params.
Isotropic:

QDA: σ̂2 = 1
dn

∑
i:yi=C ∥xi − µ̂c∥2

LDA: σ̂2 = 1
dn

∑
C

∑
i:yi=C ∥xi − µ̂c∥2

Anisotropic:
QDA: Σ̂c = 1

nc

∑
i:yi=C(Xi − µ̂c)(Xi − µ̂c)⊤

LDA: Σ̂ = 1
n

∑
C

∑
i:yi=C(Xi − µ̂c)(Xi − µ̂c)T

Discriminative

Want to learn a few things before trying to classify.
Only tries to model P(Y |X) from training data.
Logistic Reg (2 classes): For a training point,
P (Y = yi | x) = pyi (1− p)1−yi . Note that p = s

(
wT x

)
as given by

our model of the posterior P (Y = 1 | x). MLE on this leads to the
cross entropy loss function (which is convex!), namely

L(w) = −
∑

yi (ln pi + (1− yi) ln (1− pi))

Note: P (Y = 1 | x) = 1
1+exp(−wT x)

; s′(γ) = s(γ)(1− s(γ))

Decision Boundary: of the form wT x > c1 thus must be linear.
Though probability predictions are non-linear, actual boundary is
linear. Log Reg always separates linearly separable points.
Softmax Reg: logistic regression for multiple classes

Probability

Multivariate Gaussian PDF:

fX (x1, . . . , xk) =
exp(− 1

2
(x−µ)TΣ−1(x−µ))√

(2π)k|Σ|

MLE (Maximum Likelihood Estimate)

We have A,B,C,D. P (A | B) > P (A | C) > P (A | D)
=⇒ B is the MLE of A. MLE Estimate of Anisotropic can be PSD.

θ̂MLE(x) = arg max
θ

Πf(x | θ) = arg max
θ

lnL(θ;x)

Mean is unbiased; Variance is biased (usually underestimate)
Predicts parameter which max the probability of the data.
Implicitly assumes uniform prior

MAP (Maximum a Posteriori)

We have A,B,C,D. P(A | B) > P(C | B) > P(D | B)
=⇒ A is the MAP of B.

θ̂MAP = arg max
θ

f(θ | x) = arg max
θ

f(x | θ) · g(θ)

Predicts the parameter which maximizes the conditional probability
of the parameter given the data.
Should be used when you have the prior probabilities.

MLE = MAP when all parameters have equal prior probability.
The axis lengths of Gaussian Isocontours are σi s.t.
σ2(X) = Var(X). Independent ⇐⇒ uncorrelated (only for
Multivariate Gaussian).

Bayesian Risk

L (loss function) is symmetric: pick class with max posterior prob.
L is asymmetric: minimize E[L(true class,prediction) | data] or pick
max loss-weighted posterior prob.

The risk for r is the expected loss over all values of x, y. Equals to 0

when class distros don’t overlap or prior prob for one class is 1.

R(r) = E[L(r(X), Y)]

=
∑
x

 ∑
c∈{−1,1}

L(r(x), c)P (Y = c | X = x)

P (X = x)

=
∑

c∈{−1,1}

(
P (Y = c)

∑
x

L(r(x), c)P (X = x | Y = c)

)

R(ŷ = i | x) =
C∑

j=1

λijP (Y = j | x)

The Bayes decision rule aka Bayes classifier is the fn r∗ that
minimizes functional R(r). Assuming L(z, y) = 0 for z = y:

r
∗
(x) =

{
1 if L(−1, 1)P (Y = 1 | X = x) > L(1,−1)P (Y = −1 | X = x)

−1 otherwise

Regression Methods

Model: y = Xw, Loss Function: least squares, n ∈ N(X)

Name Objective Solution

OLS 1
n∥Y − Xw∥2

2 w∗ = (X⊤X)†X⊤y ∈
X†y + n

Ridge: Assumes
Gaussian Priors

1
n∥Y − Xw∥2

2 + λ∥w∥2
2 w∗ = (X⊤X +

nλI)−1X⊤y

LASSO 1
n∥Y − Xw∥2

2 + λ∥w∥1 No closed form

Linear Algebra

Matrix Calculus

∇x⃗w⃗
⊤x⃗ =

(
∂w⃗⊤x⃗
∂x⃗

)⊤
= w⃗ ∇x⃗(w⃗

⊤Ax⃗) = A⊤w⃗

∇Aw⃗⊤Ax⃗ = w⃗x⃗⊤ ∇x⃗(x⃗
⊤Ax⃗) = (A+A⊤)x⃗

∇2
x⃗(x⃗

⊤Ax⃗) = A+A⊤ ∇x⃗(αy⃗) = (∇x⃗α)y⃗
⊤ + α∇x⃗y⃗

∇x⃗f⃗(y⃗) = (∇x⃗y⃗)(∇y⃗ f⃗(y⃗)) ∇x⃗(y⃗ · z⃗) = (∇x⃗y⃗)z⃗ + (∇x⃗z⃗)y⃗

∇x⃗Cy⃗(x⃗) = (∇x⃗y⃗(x⃗))C
⊤ ∂∥x⃗∥22

∂x⃗
=

∂(x⃗⊤x⃗)
∂x⃗

= 2x⃗

∇y⃗(y⃗ −Ax⃗)⊤W (y⃗ −Ax⃗) = 2W (y⃗ −Ax⃗)

∇x⃗(y⃗ −Ax⃗)⊤W (y⃗ −Ax⃗) = −2A⊤W (y⃗ −Ax⃗)

∇w⃗

(
∥Xw⃗ − y⃗∥22 + λ∥w⃗∥22

)
= 2X⊤Xw⃗ − 2X⊤y⃗ + 2λw⃗

Matrix A is Positive Semi-Definite iff

(a) ∀x⃗ ̸= 0⃗ ∈ Rn, x⃗⊤Ax⃗ ≥ 0. Symmetric.

(b) All eigenvalues of A are non-negative (λi ≥ 0).

(c) ∃ unique matrix L ∈ Rn×n such that A = LL⊤ (Cholesky
decomposition).

PSD Example: A =

[
2 −1
−1 2

]
, with λ = 3, 1. L =

[
1 0
−1 1

]
.

All diagonal entries of A are non-negative and Tr(A) ≥ 0.
Sum of all the entries ≥ 0. Var(Mx) = M Var(x)MT ,M is
constant. M ≻ 0, N ≻ 0,M −N ⪰ 0 =⇒ N−1 −M−1 ⪰ 0
M ⪰ 0, N ⪰ 0 =⇒ M −N ⪰ 0 ⇐⇒ λmin(M) > λmax(N).

A = A
1
2 A

1
2 = UΛ

1
2 Λ

1
2 U⊤, A

1
2 = UΛ

1
2 U⊤

A function is convex iff Hessian is PSD. Strict Convexity:
(∀0 < t < 1), f(tx1 + (1− t)x2) < tf(x1) + (1− t)f(x2)

Covariance Matrix

Σ =
1

n
X̂⊤X =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xd)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xd)

.

.

.

.

.

.

.
.
.

.

.

.
Cov(Xd,X1) Cov(Xd,X2) · · · Var(Xd)


= E[(X − µ)⊤(X − µ)] where X ∈ Rn×d, all diag entries > 0

Symmetric, PSD =⇒ ∃Σ = V ΛV ⊤ by Spectral Theorem. PD =⇒
symmetric in this class. Eigenvectors are orthogonal directions along
which points are uncorrelated. Σ−1 = V Λ−1V ⊤ =

∑
i

1
Λii

viv
⊤
i

Spectral Theorem: A = V ΛV ⊤. All real+symmetric n× n
matrices have real eigenvalues and n eigenvectors that are mutually
orthogonal: v⊤i vj = 0 ∀i ̸= j.

Norm Ball

ℓ0 and ℓ1 encourage sparsity (more than ℓ2).

Fundamental Theorem of Linear Algebra

(N(A)⊥ = R(A⊤))⊕ (N(A⊤A) = N(A) = R(A⊤)⊥) = Rn

(N(A⊤)⊥ = R(A))⊕ (N(A⊤) = R(A)⊥) = Rm

Rank-nullity Theorem: dim(R(A)) + dim(N(A)) = n
Jensen’s Inequality: If f(x) is strictly convex, E[f(x)] > f(E[x]).
dim(Row(X)) = dim(R(X⊤)) = rank(X⊤) = rank(X).
Row(X⊤X) = R(X⊤X) = Row(X) = R(X⊤)

Update Rule

Gradient Descent: w(t+1) ← w(t) − η∇wJ(w(t))

Logistic Reg: w(t+1) ← w(t) + ϵX⊤ (
y − s(Xw(t))

)
Newton’s Method: w(t+1) ← w(t) − (∇2

wJ(w(t)))−1∇wJ(w(t))
*** Note: If J quadratic, Newton’s method only needs one

step to find exact solution. Newton’s Method
doesn’t work for most nonsmooth functions, and
is generally faster than BGD/SGD.

Stochastic GD: w ← w − ϵ∇wJ(w)i for some i ∈ U([1, . . . , n])
Logistic Reg: w ← w + ϵ(yi − s(Xi · w))Xi

Cost Functions
yi = f(Xi) + ϵi: ϵi from Gaussian, all ϵi same mean, all yi same var
General: J =

∑n
i=1 L(Xi · w, yi)

Linear: J =
∑n

i=1(Xi · w + α− yi)
2 = ∥Xw − y∥22

Logistic: J = −
∑n

i=1 (yi ln s(Xi · w) + (1 − yi) ln(1 − s(Xi · w)))

Weight LS: J =
∑n

i=1 wi(Xi · w − yi)
2 = (Xw − y)⊤Ω(Xw − y)

ROC Curve

Design Matrix

Centering: subtracting µ⊤ from each row of X: X −→ Ẋ

Decorrelating: Applying rotation Z = ẊV where Var(X) =
V ΛV ⊤. Covariance matrix of Z is Λ (diagonal)

Sphering: W = Ẋ Var(X)−1/2 (Σ−1/2:ellipsoid to sphere)
Whitening: Perform centering, and then sphering

Bias-Variance Tradeoff
Statistical Bias: E[θ̂ − θ] = E[θ̂]− θ.
Bias: error due to inability of hypothesis h to fit g perfectly e.g.,
fitting quadratic g with a linear h
Variance: error due to fitting random noise in data e.g., we fit
linear g with a linear h, yet h ̸= g.
Overfitting: Low Bias, High Variance
Underfitting: High Bias, Low Variance.
Adding a feature usually increases variance [don’t add a feature
unless it reduces bias more]. Adding a feature results in a
non-increasing bias.
Forward/Backward stepwise selection aren’t guaranteed to find
optimal features. Backward stepwise selection looks at d′ − 1
features at a time, where d′ is current num of features (one at a
time). Use Forward selection if we think few features important,
Backward selection if many features important.
higher residuals =⇒ higher bias
higher complexity =⇒ higher variance

Var(h(z)) = E
[
(h(z)− E[h(z)])2

]
≈ σ2 d

n

Bias-Variance Decomposition:
Model Risk = E[L(h(z), γ)] = E[(h(z)− γ)2]

= (E[h(z)]− g(z))2︸ ︷︷ ︸
bias2 of method

+ Var(h(z))︸ ︷︷ ︸
variance of method

+ Var(ϵ)︸ ︷︷ ︸
irreducible error

where E[γ] = g(z); Var(γ) = Var(ϵ).

Note: the model determines Bias-Variance Tradeoff, not the
algorithm used to solve the model/optimization problem.

Isocontour/Voronoi Diagrams

LDA: same variance; decision
boundary is linear

QDA: different variance; deci-
sion boundary is curved towards
class(es) w/ lower variance

Quadratic Form: x⊤A−2x = ∥A−1x∥22 is an ellipsoid with axes
v1, v2, . . . vn (eigenvectors of A) and radii λ1, λ2, . . . , λn

(eigenvalues of A). Note that A > 0.

Gaussian with covariance matrix Σ = 1
n
X̂⊤X̂ isocontours with radii

of length
√

λi(Σ) = σi(X)

Decision Trees
Tree with each node denoting a split over some feature. Leaf node
specifies class. deep decision tree = overfit = high variance

Random Forests
At each node, take rnd sample of m features (out of d).

Classification: minit ≈
√
d

Regression: minit ≈ d
3

Smaller m = less features = less complex model = more bias

Kernels
Can speedup algorithms such as SVMs, kNN, Regression (linear &
logistic), k-means, etc.
w = X⊤a =

∑n
i=1 aiXi Substitute this into the algorithm so we

have to optimize n weights a instead of d weights w
Kernel Ridge Regression: Center X and y so means are 0,
Xi,d+1 = 1. Solve normal equations: (X⊤X + λI)w = X⊤y

If a is a solution to (X⊤X + λI)a = y,
X⊤y = X⊤XX⊤a+ λX⊤a = (X⊤X + λI)X⊤a =⇒ w = X⊤a
The dual: min ||XX⊤a− y||2 + λ||X⊤a||2
Test phase: h(z) = w⊤z = a⊤Xz =

∑n
i=1 ai(X

⊤
i z), if X⊤

i z are
precomputed, it takes O(n) time to evaluate h vs O(d) time for
primal method.
kernel fn: k(x, z) = x⊤z, kernel mtx: K = XX⊤ (Kij = k(Xi, Xj))
kernel matrix must be PSD + symmetric
Solve (K + λI)a = y O(n3), test h(z) =

∑
aik(Xi, z) O(nd) time

Dual: O(n3 +n2d), Primal: O(d3 + d2n), dual is better when d > n.
Kernel Trick: Polynomial kernel = k(x, z) = (x⊤z + 1)p

Can compute k(x, z) = Φ(x)⊤Φ(z) in O(d) time instead of O(dp)

Enables us to implicitly handle polynomial features efficiently
Kernel Perceptrons:
w ← y1Φ(X1): while some yiΦ(Xi) · w < 0, w ← w + ϵyiΦ(Xi)
for each test pt z, h(z)← w · Φ(z)
Let Φ(X) be x×D matrix with rows Φ(Xi)

⊤

Dualize with w = Φ(X)⊤a, ai ← ai + ϵyi,
h(z) =

∑n
i=1 aj + k(Xij , z)

Φ(Xi) · w = (Φ(X)w)i = (Φ(X)Φ(X)⊤a)i = (Ka)i

a←
[
y1 0 · · · 0

]⊤
: while some yi(Ka)i < 0, ai ← ai + ϵyi

O(n2d) to kernel mtx O(1) to update a, O(n) to update Ka

Learning Theory

Range Space (P, H): P = set of all possible train/test pts (ex. Rd)
H = set of all possible hypotheses Dichotomy: split of input data
into two separate classes, not necessarily linear decision boundary.
Shatter Function: ΠH(X) = |{X ∩ h : h ∈ H}| = maximum number
of dichotomies hypothesis class H can produce in particular set of
points X. ΠH(n) = max

|X|=n,X⊆P
ΠH(X)= maximum number of

dichotomies hypothesis class H can produce amongst a set of n data
points and is only ever 2n (known as shattering) or polynomial in n.
VC Dimension = the largest number of points D s.t. ΠH(D) = 2n.
Basically largest number of points a hypothesis class can produce
all dichotomies of. Can be infinite, can be 0. A linear perceptron
classifier with d parameters (d-dimensional weight vectors) has a
VC dimension of d. For example, 2d linear perceptron (three
weights - one for each dimension and one fictitious dimension =
bias) has VC dimension of 3.

AdaBoost
Ensemble method that trains multiple learns on weighted sample
points and weights learner. (misclassified points = increased
weights, accurate learners = increased weights). Find classifier GT

and coefficient βT to minimize
Risk = 1

n

∑n
i=1 L(M(Xi), yi) with M(Xi) =

∑T
t=1 βtGt(Xi)

AdaBoost metalearner uses L(ρ, ℓ) = e−ρℓ

w
(T+1)
i = w

(T)
i exp(−βT yi GT (Xi)), βT = 1

2
ln

(
1−errT
errT

)
errT =

∑
yi ̸=GT (Xi)

w
(T)
i∑n

i=1 w
(T)
i

. metalearner: h(z) = sign(
∑T

t=1 βtGt(z))

Neural Nets
Multi-layered perceptron, each layer puts outputs of previous layer
linear function and then activation function. Minimize loss via
gradient descent

Principal Component Analysis

PCA only makes linear relations. Low-rank approximation is lossy
feature selection: you lose lower variance components yet select out
low-singular values (often “noise” components)
XX⊤

Clustering

NP-hard: find argminy
∑k

i=1

∑
yj=i ||Xj − µi||2

K-means: alternate between fixed yj ’s update µi’s and vice versa.
Halt when step 2 changes no assignments. Both steps decrease
objective fn unless they change nothing; alg must terminate.
Initialization: Forgy method (choose k random points to be
centroids). Can also use the (worse) random partitions - randomly
assign each point to a cluster. K-medioids: K-means, but instead of
using mean, use medioid, sample point minimizing total distance to
other points in cluster.
Hierarchical clustering: creates a tree, every subtree is a cluster.
Bottom-up (agglomerative) start with each point a cluster;
repeatedly fuse pairs minimizing d(A,B). Linkage functions:
complete: d(A,B) = max{d(w, x) : w ∈ A, x ∈ B}
single: d(A,B) = min{d(w, x) : w ∈ A, x ∈ B}
average: d(A,B) = 1

|A||B|
∑

w∈A

∑
x∈B dist(w, x)

centroid: d(A,B) = dist(µA, µB)
Top-down (divisive) starts with single cluster, repeatedly splits

Miscellaneous
NP-Hard to find optimal linear classifier
Bayes vs. GDA Bayes uses true mean/variance, while GDA uses

sample mean/variance. True mean/variance
equal ̸⇒ Sample mean/variance equal

Cauchy-Schwarz |⟨x, y⟩| ≤ ∥x∥ · ∥y∥
Sigmoid Function:
s(γ) = 1

1+e−γ

Graph:

Unique Optimum Only ridge regression has one unique optimum
(not Least Squares, Lasso, or Logistic).

Training Data: Training on less data can improve training accu-
racy, training on more data can improve valida-
tion/test accuracy.

ln(ab) = ln(a) + ln(b); ax+y = ax · ay
Credits: Jonny Pei, Elden Ren, Rahul Shah

	Classificationheightwidthwidthheight
	k-Nearest Neighbors
	Perceptron
	Support Vector Machines
	Soft-Margin
	Generative
	Discriminative

	Probabilityheightwidthwidthheight
	MLE (Maximum Likelihood Estimate)
	MAP (Maximum a Posteriori)
	Bayesian Risk

	Regression Methodsheightwidthwidthheight
	Linear Algebraheightwidthwidthheight
	Matrix Calculus
	Matrix A is Positive Semi-Definite iff
	Norm Ball
	Fundamental Theorem of Linear Algebra

	Update Ruleheightwidthwidthheight
	Cost Functionsheightwidthwidthheight
	ROC Curveheightwidthwidthheight
	Design Matrixheightwidthwidthheight
	Bias-Variance Tradeoffheightwidthwidthheight
	Isocontour/Voronoi Diagramsheightwidthwidthheight
	Decision Treesheightwidthwidthheight
	Random Forestsheightwidthwidthheight
	Kernelsheightwidthwidthheight
	Learning Theoryheightwidthwidthheight
	AdaBoostheightwidthwidthheight
	Neural Netsheightwidthwidthheight
	Principal Component Analysisheightwidthwidthheight
	Clusteringheightwidthwidthheight
	Miscellaneousheightwidthwidthheight

