Classification

k-Nearest Neighbors

kNNs are bounded by $\leq 2x$ the Bayes optimal error, $N, k \to \infty, k/N \to 0$. Edge Case 2 pts w/ same features but diff

Edge Case	2 pts w/ same features but diff classes.	
Robustness	Generalizes better to test data.	
Fit	Better training classification.	
Validation	Hold back data subset as validation set.	
	Train multiple times w/ diff hyperparams.	
	Choose what is best on validation set.	
Training Set	Used to learn model weights.	
Validation Set	Tunes hyperparameters (ex. $k \in kNN$).	
Test Set	used as FINAL evaluation of model.	
Isocontour of f	$L_c = \{x \mid f(x) = c\}, \text{ with isovalue } c.$	
Isotropic Gaussian	Same var in ea dir: $\Sigma = cI$.	
Anisotropic Gaussian	Allows diff amounts of var along diff dirs, $\Sigma \succ 0$.	

Perceptron

Model/rule: 1 if $\vec{X}_i \cdot \vec{w} \ge 0$ elif $\vec{X}_i \cdot \vec{w} \le 0 \implies -1$. Loss: $L(z, y_i) = 0$ if $y_i z \ge 0$ else $-y_i z$, $(z=\text{pred}, y_i=\text{true ans})$.

$$R(w) = \sum_{i=1}^{n} L\left(X_i \cdot w, y_i\right) = \sum_{i \in V} -y_i X_i \cdot w$$

Gives some linear boundary; if data is linearly separable, correctly classifies all data in at most $O\left(\frac{r^2}{\gamma^2}\right)$ iterations.

Support Vector Machines

Hard-Margin: $\min_{\vec{x} \neq i} \|\vec{w}\|_2^2$, s.t. $y_i(\vec{w}^\top \vec{x}_i - b) \ge 1 \ \forall i$

Fails w/ non-linearly sep. data. Margin size = $\frac{1}{\|w\|}$, Slab size = $\frac{2}{\|w\|}$

Hyperplane	$H = \{x : w \cdot x = -\alpha\}$
	flat, infinite, $\dim(d-1)$ plane
$x, y \in H$	$\vec{w} \cdot (y - x) = 0, \vec{w}$ is normal vec of <i>H</i> .
Support Vectors	Examples needed to find $f(\mathbf{x}) \in \text{SVM}$.
	Examples with non-0 weight $\alpha_1 \in SVM$

Soft-Margin

Allows misclassifications: $\min_{\vec{w}, b, \xi_i} \frac{1}{2} \|\vec{w}\|^2 + C \sum_{i=1}^n \xi_i$ s.t.

$$y_i(\vec{w}^{\top}\vec{x_i} - b) \ge 1 - \xi_i, \quad \forall i; \quad \xi_i \ge 0, \quad \forall i$$

Generative

Want to learn **everything** about data before you classify: the **priors** $\hat{\pi}_i = \Pr(Y = C_i)$ and **cond. dist** $\mathbb{P}(X|Y = C_i)$. **Posterior**: $\mathbb{P}(Y = C_i|X) = \frac{\mathbb{P}(X|Y = C_i) \cdot \mathbb{P}(Y = C_i)}{\mathbb{P}(X)}$ Logistic $\frac{1}{1 + e^{-h(x)}}$, where h(x) is **linear** in terms of features. True

Function: in LDA but not QDA (where h(x) is quadratic).

GDA: Assumes each class models a Gaussian distribution. $Q_C(x) = -\frac{\|x-\mu_C\|^2}{2\sigma_C^2} - d\ln\sigma_C + \ln\pi_C = \ln\left(\sqrt{2\pi}^d f_C(x)\pi_C\right) = -\frac{1}{2}(x-\mu_C)^\top \Sigma_C^{-1}(x-\mu_C)$

QDA: Works with any number of classes; $\frac{d(d+3)}{2} + 1$ params. LDA: when variances are equal; d + 1 params. Isotropic:

 $\begin{aligned} & \left[\begin{array}{l} \mathbf{Q}\mathbf{D}\mathbf{A}: \widehat{\sigma}^2 = \frac{1}{dn} \sum_{i:y_i = C} \|x_i - \widehat{\mu_c}\|^2 \\ & \mathbf{L}\mathbf{D}\mathbf{A}: \widehat{\sigma}^2 = \frac{1}{dn} \sum_C \sum_{i:y_i = C} \|x_i - \widehat{\mu_c}\|^2 \\ & \mathbf{Anisotropic:} \\ & \mathbf{Q}\mathbf{D}\mathbf{A}: \ \widehat{\Sigma}_c = \frac{1}{n_c} \sum_{i:y_i = C} (X_i - \widehat{\mu_c}) (X_i - \widehat{\mu_c})^\top \end{aligned} \end{aligned} \end{aligned}$

Discriminative

Want to learn a *few* things before trying to classify. Only tries to model $\mathbb{P}(Y|X)$ from training data.

Logistic Reg (2 classes): For a training point, $P(Y = y_i | x) = p^{y_i}(1-p)^{1-y_i}$. Note that $p = s(w^T x)$ as given by

 $P(Y = y_i | x) = p^{y_i}(1 - p)^{Y - y_i}$. Note that $p = s(w^T x)$ as given by our model of the posterior P(Y = 1 | x). MLE on this leads to the cross entropy loss function (which is convex!), namely

$$L(w) = -\sum y_i \left(\ln p_i + (1 - y_i) \ln (1 - p_i) \right)$$

Note:
$$P(Y = 1 | x) = \frac{1}{1 + \exp(-w^T x)}; s'(\gamma) = s(\gamma)(1 - s(\gamma))$$

Decision Boundary: of the form $w^{T}x > c_{1}$ thus must be linear. Though probability predictions are non-linear, actual boundary is linear. Log Reg always separates linearly separable points. **Softmax Reg:** logistic regression for multiple classes

Probability

MLE (Maximum Likelihood Estimate)

We have A, B, C, D. P(A | B) > P(A | C) > P(A | D) $\implies B$ is the MLE of A. MLE Estimate of Anisotropic can be PSD. $\hat{\theta}_{MLE}(x) = \arg \max_{\theta} \Pi f(x | \theta) = \arg \max_{\theta} \ln \mathcal{L}(\theta; x)$

Mean is unbiased; Variance is biased (usually underestimate) Predicts parameter which max the probability of the data. Implicitly assumes uniform prior

MAP (Maximum a Posteriori)

We have A, B, C, D. $\mathbb{P}(A \mid B) > \mathbb{P}(C \mid B) > \mathbb{P}(D \mid B)$ $\implies A \text{ is the MAP of } B.$

 $\hat{\theta}_{MAP} = \arg \max f(\theta \mid x) = \arg \max f(x \mid \theta) \cdot g(\theta)$

Predicts the parameter which maximizes the conditional probability of the parameter given the data.

Should be used when you have the prior probabilities.

MLE = MAP when all parameters have equal prior probability. The axis lengths of Gaussian Isocontours are σ_i s.t.

 $\sigma^2(X) = \operatorname{Var}(X)$. Independent \iff uncorrelated (only for Multivariate Gaussian).

Bayesian Risk

L (loss function) is symmetric: pick class with max posterior prob. L is asymmetric: minimize $\mathbb{E}[L(\text{true class, prediction}) \mid \text{data}]$ or pick max loss-weighted posterior prob. The risk for r is the expected loss over all values of x, y. Equals to 0 when class distros don't overlap or prior prob for one class is 1.

$$R(r) = \mathbb{E}[L(r(X), Y)]$$

= $\sum_{x} \left(\sum_{c \in \{-1, 1\}} L(r(x), c) P(Y = c \mid X = x) \right) P(X = x)$
= $\sum_{c \in \{-1, 1\}} \left(P(Y = c) \sum_{x} L(r(x), c) P(X = x \mid Y = c) \right)$

$$R(\hat{y} = i \mid x) = \sum_{j=1}^{C} \lambda_{ij} P(Y = j \mid x)$$

The Bayes decision rule aka Bayes classifier is the fn r^* that minimizes functional R(r). Assuming L(z, y) = 0 for z = y:

$$r^{*}(x) = \begin{cases} 1 \text{ if } L(-1,1)P(Y=1 \mid X=x) > L(1,-1)P(Y=-1 \mid X=x) \\ -1 \text{ otherwise} \end{cases}$$

Regression Methods

Model: y = Xw, Loss Function: least squares, $n \in N(X)$

Name	Objective	Solution
OLS	$\frac{1}{n} \ Y - Xw\ _2^2$	$w^*_{\pm} = (X^\top X)^{\dagger} X^\top y \in$
		$X^{+}y + n$
Ridge: Assumes Gaussian Priors	$\frac{1}{n} \ Y - Xw\ _2^2 + \lambda \ w\ _2^2$	$w^* = (X^\top X +$
Gaassian 1 11015		$(n\lambda I)^{-1}X^{+}y$
LASSO	$\frac{1}{n} \ Y - Xw\ _2^2 + \lambda \ w\ _1$	No closed form

Linear Algebra

Matrix Calculus

$\nabla_{\vec{x}} \vec{w}^{\top} \vec{x} = \left(\frac{\partial \vec{w}^{\top} \vec{x}}{\partial \vec{x}}\right)^{\top} = \vec{w}$	$\nabla_{\vec{x}}(\vec{w}^{\top}A\vec{x}) = A^{\top}\vec{w}$		
$\nabla_A \vec{w}^\top A \vec{x} = \vec{w} \vec{x}^\top$	$\nabla_{\vec{x}}(\vec{x}^{\top}A\vec{x}) = (A + A^{\top})\vec{x}$		
$\nabla^2_{\vec{x}}(\vec{x}^\top A \vec{x}) = A + A^\top$	$\nabla_{\vec{x}}(\alpha \vec{y}) = (\nabla_{\vec{x}} \alpha) \vec{y}^{\top} + \alpha \nabla_{\vec{x}} \vec{y}$		
$\nabla_{\vec{x}}\vec{f}(\vec{y}) = (\nabla_{\vec{x}}\vec{y})(\nabla_{\vec{y}}\vec{f}(\vec{y}))$	$\nabla_{\vec{x}}(\vec{y}\cdot\vec{z}) = (\nabla_{\vec{x}}\vec{y})\vec{z} + (\nabla_{\vec{x}}\vec{z})\vec{y}$		
$\nabla_{\vec{x}} C \vec{y}(\vec{x}) = (\nabla_{\vec{x}} \vec{y}(\vec{x})) C^{\top}$	$\frac{\partial \ \vec{x}\ _2^2}{\partial \vec{x}} = \frac{\partial (\vec{x}^\top \vec{x})}{\partial \vec{x}} = 2\vec{x}$		
$\nabla_{\vec{y}}(\vec{y} - A\vec{x})^{\top}W(\vec{y} - A\vec{x}) = 2W(\vec{y} - A\vec{x})$			
$\nabla_{\vec{x}}(\vec{y} - A\vec{x})^{\top}W(\vec{y} - A\vec{x}) = -2A^{\top}W(\vec{y} - A\vec{x})$			
$ abla_{\vec{w}} \left(\ X\vec{w} - \vec{y}\ _2^2 + \lambda \ \vec{w}\ _2^2 \right) = 2X^\top X\vec{w} - 2X^\top \vec{y} + 2\lambda \vec{w}$			

Matrix A is **Positive Semi-Definite** iff

(a) $\forall \vec{x} \neq \vec{0} \in \mathbb{R}^n, \vec{x}^\top A \vec{x} \ge 0$. Symmetric.

- (b) All eigenvalues of A are non-negative $(\lambda_i \ge 0)$.
- (c) \exists unique matrix $L \in \mathbb{R}^{n \times n}$ such that $A = LL^{\top}$ (Cholesky decomposition).

 $\begin{array}{l} \text{PSD Example: } A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \text{, with } \lambda = 3, 1. \ L = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \text{.} \\ \text{All diagonal entries of A are non-negative and } \text{Tr}(A) \geq 0. \\ \text{Sum of all the entries } \geq 0. \ \text{Var}(Mx) = M \operatorname{Var}(x)M^T, M \text{ is constant. } M \succ 0, N \succ 0, M - N \succeq 0 \implies N^{-1} - M^{-1} \succeq 0 \\ M \succeq 0, N \succeq 0 \implies M - N \succeq 0 \iff \lambda_{\min}(M) > \lambda_{\max}(N). \\ A = A^{\frac{1}{2}}A^{\frac{1}{2}} = U\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}U^{\top}, A^{\frac{1}{2}} = U\Lambda^{\frac{1}{2}}U^{\top} \\ \text{A function is convex iff Hessian is PSD. Strict Convexity: } \\ (\forall 0 < t < 1), f(tx_1 + (1 - t)x_2) < tf(x_1) + (1 - t)f(x_2) \\ \end{array}$

Covariance Matrix

$$\Sigma = \frac{1}{n} \hat{X}^{\top} X = \begin{bmatrix} \nabla_{\operatorname{Ar}(X_1)} & \nabla_{\operatorname{Ov}(X_1, X_2)} & \cdots & \nabla_{\operatorname{Ov}(X_1, X_d)} \\ \nabla_{\operatorname{Ov}(X_2, X_1)} & \nabla_{\operatorname{Ar}(X_2)} & \cdots & \nabla_{\operatorname{Ov}(X_2, X_d)} \\ \vdots & \vdots & \ddots & \vdots \\ \nabla_{\operatorname{Ov}(X_d, X_1)} & \nabla_{\operatorname{Ov}(X_d, X_2)} & \cdots & \nabla_{\operatorname{Ar}(X_d)} \end{bmatrix}$$

$$= \mathbb{E}[(X - \mu)^{\top}(X - \mu)]$$
 where $X \in \mathbb{R}^{n \times d}$, all diag entries > 0

Symmetric, PSD $\implies \exists \Sigma = V\Lambda V^{\top}$ by Spectral Theorem. PD \implies symmetric in this class. Eigenvectors are orthogonal directions along which points are uncorrelated. $\Sigma^{-1} = V\Lambda^{-1}V^{\top} = \sum_{i} \frac{1}{\Lambda_{ii}} v_i v_i^{\top}$

Spectral Theorem: $A = V\Lambda V^{\top}$. All real+symmetric $n \times n$ matrices have real eigenvalues and n eigenvectors that are mutually orthogonal: $v_i^{\top}v_j = 0 \quad \forall i \neq j$.

Norm Ball

 ℓ_0 and ℓ_1 encourage sparsity (more than ℓ_2).

Fundamental Theorem of Linear Algebra

 $\begin{array}{l} (N(A)^{\perp} = R(A^{\top})) \oplus (N(A^{\top}A) = N(A) = R(A^{\top})^{\perp}) = \mathbb{R}^{n} \\ (N(A^{\top})^{\perp} = R(A)) \oplus (N(A^{\top}) = R(A)^{\perp}) = \mathbb{R}^{m} \\ \text{Rank-nullity Theorem: } \dim(R(A)) + \dim(N(A)) = n \\ \text{Jensen's Inequality: If } f(x) \text{ is strictly convex, } \mathbb{E}[f(x)] > f(\mathbb{E}[x]). \\ \dim(\operatorname{Row}(X)) = \dim(R(X^{\top})) = \operatorname{rank}(X^{\top}) = \operatorname{rank}(X). \\ \operatorname{Row}(X^{\top}X) = R(X^{\top}X) = \operatorname{Row}(X) = R(X^{\top}) \end{array}$

Update Rule

 $\begin{array}{ll} \text{Gradient Descent:} & w^{(t+1)} \leftarrow w^{(t)} - \eta \nabla_w J(w^{(t)}) \\ \text{Logistic Reg:} & w^{(t+1)} \leftarrow w^{(t)} + \epsilon X^\top \left(y - s(Xw^{(t)})\right) \end{array} \end{array}$

 $\begin{array}{lll} \text{Newton's Method:} & w^{(t+1)} \leftarrow w^{(t)} - (\nabla^2_w J(w^{(t)}))^{-1} \nabla_w J(w^{(t)}) \\ \text{*** Note:} & \text{If } J \text{ quadratic, Newton's method only needs one} \\ & \text{step to find exact solution. Newton's Method} \\ & \text{doesn't work for most nonsmooth functions, and} \\ & \text{is generally faster than BGD/SGD.} \end{array}$

Cost Functions

 $\begin{array}{ll} y_i = f(X_i) + \epsilon_i: \ \epsilon_i \ \text{from Gaussian, all} \ \epsilon_i \ \text{same mean, all} \ y_i \ \text{same var} \\ \text{General:} \quad J = \sum_{i=1}^n L(X_i \cdot w, y_i) \\ \text{Linear:} \quad J = \sum_{i=1}^n (X_i \cdot w + \alpha - y_i)^2 = \|Xw - y\|_2^2 \\ \text{Logistic:} \quad J = -\sum_{i=1}^n (y_i \ln s(X_i \cdot w) + (1 - y_i) \ln(1 - s(X_i \cdot w))) \\ \text{Weight LS:} \ J = \sum_{i=1}^n w_i (X_i \cdot w - y_i)^2 = (Xw - y)^\top \Omega(Xw - y) \end{array}$

ROC Curve

Design Matrix

 $\begin{array}{lll} \text{Centering:} & \text{subtracting } \mu^{\top} \text{ from each row of } X \colon X \to \dot{X} \\ \text{Decorrelating:} & \text{Applying rotation } Z = \dot{X}V \text{ where } \text{Var}(X) = \\ V\Lambda V^{\top}. \text{ Covariance matrix of } Z \text{ is } \Lambda \text{ (diagonal)} \\ \text{Sphering:} & W = \dot{X} \operatorname{Var}(X)^{-1/2} (\Sigma^{-1/2} \text{:ellipsoid to sphere}) \\ \text{Whitening:} & \text{Perform centering, and then sphering} \end{array}$

Bias-Variance Tradeoff

Statistical Bias: $\mathbb{E}[\hat{\theta} - \theta] = \mathbb{E}[\hat{\theta}] - \theta.$

Bias: error due to inability of hypothesis h to fit g perfectly e.g., fitting quadratic g with a linear h

Variance: error due to fitting random noise in data e.g., we fit linear g with a linear h, yet $h \neq g$.

Overfitting: Low Bias, High Variance

Underfitting: High Bias, Low Variance.

Adding a feature usually increases variance [don't add a feature unless it reduces bias more]. Adding a feature results in a non-increasing bias.

Forward/Backward stepwise selection aren't guaranteed to find optimal features. Backward stepwise selection looks at d' - 1 features at a time, where d' is current num of features (one at a time). Use Forward selection if we think few features important, Backward selection if many features important.

higher residuals \implies higher bias

higher complexity \implies higher variance

$$\operatorname{Var}(h(z)) = E\left[(h(z) - E[h(z)])^2\right] \approx \sigma^2 \frac{d}{m}$$

Bias-Variance Decomposition:

Model Risk = $\mathbb{E}[L(h(z), \hat{\gamma})] = \mathbb{E}[(h(z) - \gamma)^2]$

$$= \underbrace{(\mathbf{E}[h(z)] - g(z))^2}_{\mathbf{V}} + \underbrace{\mathbf{Var}(h(z))}_{\mathbf{Var}(\epsilon)} + \underbrace{\mathbf{Var}(\epsilon)}_{\mathbf{Var}(\epsilon)}$$

bias² of method variance of method irreducible error where $E[\gamma] = g(z); Var(\gamma) = Var(\epsilon).$

Note: the model determines Bias-Variance Tradeoff, not the algorithm used to solve the model/optimization problem.

Isocontour/Voronoi Diagrams

LDA: same variance; decision boundary is linear

QDA: different variance; decision boundary is curved towards class(es) w/ lower variance

is h to fit g perfectly e.g., noise in data e.g., we fit

Quadratic Form: $x^{\top}A^{-2}x = ||A^{-1}x||_2^2$ is an ellipsoid with axes v_1, v_2, \ldots, v_n (eigenvectors of A) and radii $\lambda_1, \lambda_2, \ldots, \lambda_n$ (eigenvalues of A). Note that A > 0. Gaussian with covariance matrix $\Sigma = \frac{1}{n}\hat{X}^{\top}\hat{X}$ isocontours with radii of length $\sqrt{\lambda_i(\Sigma)} = \sigma_i(X)$

Decision Trees

Tree with each node denoting a split over some feature. Leaf node specifies class. deep decision tree = overfit = high variance

Random Forests

At each node, take rnd sample of m features (out of d). Classification: $m_{\text{init}} \approx \sqrt{d}$ Regression: $m_{\text{init}} \approx \frac{d}{3}$ Smaller m = less features = less complex model = more bias **Kernels**

Can speedup algorithms such as SVMs, $k{\rm NN},$ Regression (linear & logistic), k-means, etc.

 $w=X^\top a=\sum_{i=1}^n a_i X_i$ Substitute this into the algorithm so we have to optimize n weights a instead of d weights w

Kernel Ridge Regression: Center X and y so means are 0, $X_{i,d+1} = 1$. Solve normal equations: $(X^{\top}X + \lambda I)w = X^{\top}y$

If \underline{a} is a solution to $(X^{\top}X + \lambda I)a = y$,

$$\begin{split} X^{\top}y &= X^{\top}XX^{\top}a + \lambda X^{\top}a = (X^{\top}X + \lambda I)X^{\top}a \implies w = X^{\top}a\\ \text{The dual: } \min ||XX^{\top}a - y||^2 + \lambda ||X^{\top}a||^2\\ \text{Test phase: } h(z) &= w^{\top}z = a^{\top}Xz = \sum_{i=1}^n a_i(X_i^{\top}z), \text{ if } X_i^{\top}z \text{ are } x_i^{\top}z = x^{\top}x_i^{\top}z = \sum_{i=1}^n a_i(X_i^{\top}z), \text{ if } X_i^{\top}z \text{ are } x_i^{\top}z = x^{\top}x_i^{\top}z = x^{\top}z = x^$$

Test phase: $h(z) = w^{\top} z = a^{\top} X z = \sum_{i=1}^{n} a_i (X_i^{\top} z)$, if $X_i^{\top} z$ are precomputed, it takes O(n) time to evaluate h vs O(d) time for primal method.

kernel fn: $k(x, z) = x^{\top} z$, kernel mtx: $K = XX^{\top} (K_{ij} = k(X_i, X_j))$ kernel matrix must be PSD + symmetric

Solve $(K + \lambda I)a = y \ O(n^3)$, test $h(z) = \sum a_i k(X_i, z) \ O(nd)$ time Dual: $O(n^3 + n^2 d)$, Primal: $O(d^3 + d^2 n)$, dual is better when d > n. **Kernel Trick**: Polynomial kernel $= k(x, z) = (x^{\top}z + 1)^p$ Can compute $k(x, z) = \Phi(x)^{\top} \Phi(z)$ in O(d) time instead of $O(d^p)$

 $\ln(ab) = \ln(a) + \ln(b); \quad a^{x+y} = a^x \cdot a^y$ Credits: Jonny Pei, Elden Ren, Rahul Shah

Enables us to implicitly handle polynomial features efficiently **Kernel Perceptrons**: $w \leftarrow y_1 \Phi(X_1)$: while some $y_i \Phi(X_i) \cdot w < 0, w \leftarrow w + \epsilon y_i \Phi(X_i)$ for each test pt $z, h(z) \leftarrow w \cdot \Phi(z)$ Let $\Phi(X)$ be $x \times D$ matrix with rows $\Phi(X_i)^\top$ Dualize with $w = \Phi(X)^\top a, a_i \leftarrow a_i + \epsilon y_i,$ $h(z) = \sum_{i=1}^n a_j + k(X_{ij}, z)$ $\Phi(X_i) \cdot w = (\Phi(X)w)_i = (\Phi(X)\Phi(X)^\top a)_i = (Ka)_i$ $a \leftarrow \begin{bmatrix} y_1 & 0 & \cdots & 0 \end{bmatrix}^\top$: while some $y_i(Ka)_i < 0, a_i \leftarrow a_i + \epsilon y_i$ $O(n^2d)$ to kernel mtx O(1) to update a, O(n) to update Ka

Learning Theory

Range Space (P, H): P = set of all possible train/test pts (ex. \mathbb{R}^d) H = set of all possible hypotheses Dichotomy: split of input data into two separate classes, not necessarily linear decision boundary. Shatter Function: $\Pi_H(X) = |\{X \cap h : h \in H\}|$ = maximum number of dichotomies hypothesis class H can produce in particular set of points X. $\Pi_H(n) = \max_{\substack{|X|=n, X \subset P}} \Pi_H(X)$ = maximum number of

dichotomies hypothesis class H can produce amongst a set of n data points and is only ever 2^n (known as shattering) or polynomial in n. VC Dimension = the largest number of points D s.t. $\Pi_H(D) = 2^n$. Basically largest number of points a hypothesis class can produce all dichotomies of. Can be infinite, can be 0. A linear perceptron classifier with d parameters (d-dimensional weight vectors) has a VC dimension of d. For example, 2d linear perceptron (three weights - one for each dimension and one fictitious dimension = bias) has VC dimension of 3.

AdaBoost

Ensemble method that trains multiple learns on weighted sample points and weights learner. (misclassified points = increased weights, accurate learners = increased weights). Find classifier G_T and coefficient β_T to minimize

$$\begin{split} \operatorname{Risk} &= \frac{1}{n} \sum_{i=1}^{n} L(M(X_i), y_i) \text{ with } M(X_i) = \sum_{t=1}^{T} \beta_t G_t(X_i) \\ \operatorname{AdaBoost metalearner uses } L(\rho, \ell) &= e^{-\rho \ell} \\ w_i^{(T+1)} &= w_i^{(T)} \exp(-\beta_T \, y_i \, G_T(X_i)), \, \beta_T = \frac{1}{2} \ln \left(\frac{1 - \operatorname{err}_T}{\operatorname{err}_T} \right) \\ \operatorname{err}_T &= \frac{\sum_{y_i \neq G_T(X_i)} w_i^{(T)}}{\sum_{i=1}^{n} w_i^{(T)}}. \text{ metalearner: } h(z) = \operatorname{sign}(\sum_{t=1}^{T} \beta_t G_t(z)) \end{split}$$

Multi-layered perceptron, each layer puts outputs of previous layer linear function and then activation function. Minimize loss via gradient descent

Principal Component Analysis

PCA only makes linear relations. Low-rank approximation is lossy feature selection: you lose lower variance components yet select out low-singular values (often "noise" components) XX^{\top}

Clustering

NP-hard: find $\operatorname{argmin}_{y} \sum_{i=1}^{k} \sum_{y_{i}=i} ||X_{j} - \mu_{i}||^{2}$

K-means: alternate between fixed y_j 's update μ_i 's and vice versa. Halt when step 2 changes no assignments. Both steps decrease objective fn unless they change nothing; alg must terminate. Initialization: Forgy method (choose k random points to be centroids). Can also use the (worse) random partitions - randomly assign each point to a cluster. K-medioids: K-means, but instead of using mean, use medioid, sample point minimizing total distance to other points in cluster.

Hierarchical clustering: creates a tree, every subtree is a cluster. Bottom-up (agglomerative) start with each point a cluster; repeatedly fuse pairs minimizing d(A, B). Linkage functions: complete: $d(A, B) = \max\{d(w, x) : w \in A, x \in B\}$ single: $d(A, B) = \min\{d(w, x) : w \in A, x \in B\}$ average: $d(A, B) = \frac{1}{|A||B|} \sum_{w \in A} \sum_{x \in B} dist(w, x)$

centroid: $d(A, B) = dist(\mu_A, \mu_B)$

Top-down (divisive) starts with single cluster, repeatedly splits

Miscellaneous

NP-Hard to find optimal linear classifier Bayes vs. GDA Bayes uses true mea

Bayes uses true mean/variance, while GDA uses sample mean/variance. True mean/variance equal \neq Sample mean/variance equal $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$

Cauchy-Schwarz $|\langle x, y \rangle|$ Sigmoid Function: Graph: $s(\gamma) = \frac{1}{1+e^{-\gamma}}$

Unique Optimum

Training Data:

Only ridge regression has one unique optimum (not Least Squares, Lasso, or Logistic). Training on less data can improve training accu-

Training on less data can improve training accuracy, training on more data can improve validation/test accuracy.