’ Classification \

k-Nearest Neighbors

kNNs are bounded by < 2x the Bayes optimal error,
N,k — oo,k/N — 0.

Edge Case 2 pts w/ same features but diff classes.
Robustness Generalizes better to test data.

Fit Better training classification.
Validation Hold back data subset as validation set.

Train multiple times w/ diff hyperparams.
Choose what is best on validation set.

Used to learn model weights.

Tunes hyperparameters (ex. k € kNN).

used as FINAL evaluation of model.
Isocontour of f Le = {z | f(z) = ¢}, with isovalue c.
Isotropic Gaussian Same var in ea dir: ¥ = cl.

Anisotropic Gaussian Allows diff amnts of var along diff dirs, ¥ > 0.

Training Set
Validation Set
Test Set

Perceptron

Model/rule: 1if X; - @ > 0 elif X; - @ <0 = -1.
Loss: L(z,y;) =0 if y;z > 0 else —y;z, (2=pred, y;=true ans).
n

=Y L(Xi-wy) =Y —piX;w
i= eV
Gives some linear boundary; if data is linearly separable, correctly

2
classifies all data in at most O (;—2) iterations.

Support Vector Machines

Hard-Margin: rr_1_1£1H1T1'||§, sty (W @ —b) > 1Vi
w,

Fails w/ non-linearly sep. data. Margin size = m, Slab size = %

Tl
H={z:w-z=—-a}

flat, infinite, dim(d — 1) plane

W - (y —x) = 0, is normal vec of H.
Examples needed to find f(x) € SVM.
Examples with non-0 weight o, € SVM.

Hyperplane

r,ye€ H
Support Vectors

Soft-Margin

Allows misclassifications: ming p ¢, 5 L2+, & st
gy (BT —b)>1—¢&, Vi; & >0, Vi

Small C: maximize margin, underfitting, less sensitive, more flat.
Big C: minimize margin, overfitting, very sensitive, more sinuous.
C — co = Soft-Margin — Hard-Margin. Note C' > 0.

Generative

Want to learn everything about data before you classify:

the priors 7; = Pr(Y = C;) and cond. dist P(X|Y = C;).
Posterior: IP’(Y =CiX) = W

Logistic m, where h(z) is linear in terms of features. True

Function: i, ,DA but not QDA (where h(z) is quadratic).

GDA: Assumes each class modzels a Gaussian distribution.
Qc () = —% dlnoc + Inng =
d _
In (Var'fo(@)me) = =@ - no) "¢ @ - pe)
QDA: ‘Works with any number of classes; @ + 1 params.
LDA: when variances are equal; d + 1 params.
Isotropic:

~ 1 —12
QDA: 6% = 2o 3%, ¢ llwi — T

~ —2
LDA: 5% = ﬁ >c Zi;yi:C llzi — Rell
Anisotropic:

QDA Se = L 5y, (X - ) (X - )T

— fie) (X — fie) "

LDA: £ = % 20 Diny=c(Xi
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Discriminative

Want to learn a few things before trying to classify.

Only tries to model P(Y|X) from training data.

Logistic Reg (2 classes): For a training point,

P(Y =y; | x) = p¥i(1 — p)L~¥i. Note that p = s (wTz) as given by
our model of the posterior P(Y =1 | ). MLE on this leads to the
cross entropy loss function (which is convex!), namely

= yi(lnp; +

(1—yi)In(1—pi))
Note: P(Y =1 | @) = soirys o/(7) = s()(1 = s(9)

Decision Boundary: of the form w”z > ¢; thus must be linear.
Though probability predictions are non-linear, actual boundary is
linear. Log Reg always separates linearly separable points.
Softmax Reg: logistic regression for multiple classes

| Probability |

Multivariate Gaussian PDF':
fx (@1, ) = SRR B

X (T1;- -5 Tk NESLE]
MLE (Maximum Likelihood Estimate)
We have A, B,C,D. P(A| B) > P(A|C) > P(A| D)
=—> B is the MLE of A. MLE Estimate of Anisotropic can be PSD.
OrrpE(z) = arg max I1f(x | ) = arg max In £(6; )

0 6

Tx—p))

Mean is unbiased; Variance is biased (usually underestimate)
Predicts parameter which max the probability of the data.
Implicitly assumes uniform prior

MAP (Maximum a Posteriori)

We have A, B,C,D. P(A| B) >P(C | B) >P(D | B)
— A is the MAP of B.

Orap = arg ;”ﬂaXf(e | z) = arg gnaxf(l" [ 0)-9(0)

Predicts the parameter which maximizes the conditional probability
of the parameter given the data.

Should be used when you have the prior probabilities.

MLE = MAP when all parameters have equal prior probability.
The axis lengths of Gaussian Isocontours are o; s.t.

0%(X) = Var(X). Independent <= uncorrelated (only for
Multivariate Gaussian).

Bayesian Risk

L (loss function) is symmetric: pick class with max posterior prob.
L is asymmetric: minimize E[L(true class, prediction) | data] or pick
max loss-weighted posterior prob.

The risk for r is the expected loss over all values of z,y. Equals to 0
when class distros don’t overlap or prior prob for one class is 1.

R(r) =E[L(r(X

Y D) L@, oP(Y =c| X =2)| P(X =x)

x ce{-1,1}

> (P(Y =0¢)) L(r(x),0)P(X =z |V = c)>
1}

ce{—-1

), Y)]

The Bayes decision rule aka Bayes classifier is the fn r* that
minimizes functional R(r). Assuming L(z,y) = 0 for z = y:

*(2) = 1if L(-1,1)P(Y =1| X =2) > L(1,-1)P(Y =-1| X ==x)
CAR = —1 otherwise

‘ Regression Methods

Model: y = Xw, Loss Function: least squares, n € N(X)

Name Objective Solution
OLS Ly - Xwl|2 w' = (XTX)"XTy e
XTy +n
Ridge: Assumes
Gaugssian Priors wlY = Xwlly + 2wl v = (XTx +
nA)TIX Ty
LASSO LY — Xw|3 + Mw|ls  No closed form

’ Linear Algebra ‘

Matrix Calculus

ST o\ T
Vi E = (&g}) =@ V(3T AZ) = AT@
VAT T AT = TFT Va(@TAZ) = (A+ AT)Z
Vi@ETAD) = A+ AT Vz(ag) = (Vza)§" +aVzi

Viili) = (Ve (Vi @) Vel D) = (Vai)Z+ (Ve2)g
V05(#) = (V@) CT ArE — 22D — oz

Vz(y— Ax) W(g— 7 — AZ)

Va (1X@ = )3 + A[@]3) = 2X T X — 2X T § + 2)\b




Matrix A is Positive Semi-Definite iff

(a) V& #0eR", & AZ > 0. Symmetric.

(b) All eigenvalues of A are non-negative (A; > 0).

(¢) 3 unique matrix L € R™*" such that A = LLT (Cholesky
decomposition).
1 0
-1 1|

All diagonal entries of A are non-negative and Tr(A) >0
Sum of all the entries > 0. Var(Mz) = MVar( ) M
constant. M = 0,N >0, M - N >0 = N1 tO
M = 0, N>0 = M — N>0 = )\mm(M)>)\max(N)
A= A3 A3 —UA3ASUT, A3 = UAZUT

A function is convex iff Hessian is PSD. Strict Convexity:
(VO <t <), fltzr + (1 —t)z2) < tf(z1)+ (1 —t)f(z2)

PSD Example: A = {_21 _21} with A=3,1. L=

Covariance Matrix
Var(X7) Cov(Xy, X9) Cov(X1, Xg)
1 Cov(Xg, X1) Var(Xs) Cov(Xg, Xq)

T = XTX

Cov(X'd, X1) Cov(X’d, X2) Var('Xd)

=E[(X — )T (X — p)] where X € R"*? all diag entries > 0
Symmetric, PSD = 3% = VAV T by Spectral Theorem. PD —
symmetric in this class. Eigenvectors are orthogonal directions along

which points are uncorrelated. &=t = VA=V T = > %vzv:

Spectral Theorem: A = VAV T. All real4+-symmetric n X n
matrices have real eigenvalues and n eigenvectors that are mutually
orthogonal: v;rvj =0 Vi#j.

Norm Ball

Lo and 1 encourage sparsity (more than £2).

dim r

column
space

R™

nullspace
of AT

nullspace dimm —r
of A
dimn — 7
(N(A)* =R(AT) & (N(ATA) = N(A) = R(AT)*) =R"
(N(AT)* = R(A)) & (N(AT) = R(A)*+) =R™

Rank-nullity Theorem: dim(R(A)) + dim(N(A)) =n

Jensen’s Inequality: If f(z) is strictly convex, E[f(x)] > f(E[z]).
dim(Row(X)) = dim(R(X ")) = rank(X T) = rank(X).
Row(XTX) = R(XTX) =Row(X)=R(XT)

Update Rule

wttD) — w® — v, J(w®)
wltHD  w® 4 exT (y- S(Xw(t)))

Gradient Descent:
Logistic Reg:

wttD)  w® — (V2 J(w®)) =1V, J(w®)

If J quadratic, Newton’s method only needs one
step to find exact solution. Newton’s Method
doesn’t work for most nonsmooth functions, and
is generally faster than BGD/SGD.

Newton’s Method:
*** Note:

Stochastic GD:
Logistic Reg:

‘ Cost Functions ‘

yi = f(Xi) + €t € from Gaussian, all €; same mean, all y; same var

w < w — eV J(w); for some ¢ € U([1,
w4+ w+ e(y; — s(X; - w))X;

..,n])

General:  J =37 | L(X;-w,y;)
Linear: J=Y1" (X w+ta—y)?=||Xw—1yl3
Logistic: J==>" 1 (yilns(X;-w) + (1 —yi)In(l — s(X; - w)))

Weight LS: J =37 wi(X; - w—y)? = (Xw—y)TQXw —y)

IROC Curve|
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Design Matrix

Centering: subtracting pT from each row of X: X — X

Decorrelating;: Applying rotation Z = XV where Var(X) =
VAVT. Covariance matrix of Z is A (diagonal)

Sphering: W = X Var(X)~1/2 (£~1/2:ellipsoid to sphere)

‘Whitening: Perform centering, and then sphering

| Bias-Variance Tradeoff|

Statistical Bias: E[f — 0] = E[§] — 6.

Bias: error due to inability of hypothesis h to fit g perfectly e.g.,
fitting quadratic g with a linear h

Variance: error due to fitting random noise in data e.g., we fit
linear g with a linear h, yet h # g.

Overfitting: Low Bias, High Variance

Underfitting: High Bias, Low Variance.

Adding a feature usually increases variance [don’t add a feature
unless it reduces bias more]. Adding a feature results in a
non-increasing bias.

Forward /Backward stepwise selection aren’t guaranteed to find
optimal features. Backward stepwise selection looks at d’ — 1
features at a time, where d’ is current num of features (one at a
time). Use Forward selection if we think few features important,
Backward selection if many features important.

higher residuals = higher bias

higher complexity == higher variance

Var(h(z)) =

where E[]

E [(h(2) — E[h(2)))?] ~ 024

Bias-Variance Decomposition:
Model Risk = E[L(h(z),7)]

= E[(h(2) — )]

= (Eh(2)] —9(2))®+  Var(h(z)) +
bias2 of method variance of method

= g(2); Var(y) = Var(e).

Var(e)
~——

irreducible error

Note: the model determines Bias-Variance Tradeoff, not the
algorithm used to solve the model/optimization problem.
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Increasing Model Complexity =+

Isocontour/Voronoi Diagrams

LDA:
boundary is linear

decision QDA: different variance; deci-
sion boundary is curved towards

class(es) w/ lower variance

same variance;
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Quadratic Form: T A~2z = ||A~'z||3 is an ellipsoid with axes
v1,v2,...0n (eigenvectors of A) and radii A1, Az2,...,An

(eigenvalues of A). Note that A > 0.
Gaussian with covariance matrix ¥ =

of length \/\;(2) = 04(X)

| Decision Trees |

Tree with each node denoting a split over some feature. Leaf node
specifies class. deep decision tree = overfit = high variance

%XT)A( isocontours with radii

’ Random Forests ‘

At each node, take rnd sample of m features (out of d).
Classification: miny, ~ Vd

Regression: miniy =~ g

Smaller m = less features = less complex model = more bias

Can speedup algorithms such as SVMs, kNN, Regression (linear &
logistic), k-means, etc.

w=X"a= -7 1 a;X; Substitute this into the algorithm so we
have to optimize n weights a instead of d weights w

Kernel Ridge Regression: Center X and y so means are 0,

X a+1 = 1. Solve normal equations: (XTX+XM)w=XTy

If a is a solution to (X T X + Al)a =y,
XTy=XTXXTa4+XXTa=(XTX+A)XTa = w=X"a
The dual: min || XX Ta —y||2 + A\||X Ta||?

Test phase: h(z) =w'z=a' Xz =3",a;(X; 2), if X.T 2 are
precomputed, it takes O(n) time to evaluate h vs O(d) time for
primal method.

kernel fn: k(z,z) = 27 2, kernel mtx: K = XX T (K;; = k(X;, X;))
kernel matrix must be PSD + symmetric

Solve (K + Al)a =y O(n?), test h(z) = > a;k(X;, 2) O(nd) time
Dual: O(n2 + n2d), Primal: O(d® + d?n), dual is better when d > n.
Kernel Trick: Polynomial kernel = k(z,z) = (z "z + 1)?

Can compute k(z,z) = ®(z)T ®(2) in O(d) time instead of O(dP)

In(ab) = In(a) + In(b); a®t¥ =a®.a¥
Credits: Jonny Pei, Elden Ren, Rahul Shah

Enables us to implicitly handle polynomial features efficiently
Kernel Perceptrons:

w + y1P(X1): while some y; ®(X;) - w <0, w + w + ey; P(X;)
for each test pt z, h(z) < w - ®(2)

Let ®(X) be x x D matrix with rows ®(X;)7

Dualize with w = ®(X) " a, a; <+ a; + ey;,

h(z) = Z?:l aj + k(Xij, Z)

D(X,) - w = (B(X)w); = (B(X)D(X)Ta); = (Ka)i

a [yl 0 - O]T: while some y;(Ka); <0, a; < a; + €y;
O(n?d) to kernel mtx O(1) to update a, O(n) to update Ka

’ Learning Theory ‘

Range Space (P, H): P = set of all possible train/test pts (ex. R?)
H = set of all possible hypotheses Dichotomy: split of input data
into two separate classes, not necessarily linear decision boundary.
Shatter Function: Iy (X) = {X Nh:h € H}| = maximum number
of dichotomies hypothesis class H can produce in particular set of

points X. Iy (n) = max Iy (X)= maximum number of
|X|=n,XCP

dichotomies hypothesis class H can produce amongst a set of n data
points and is only ever 2" (known as shattering) or polynomial in n.
VC Dimension = the largest number of points D s.t. Il (D) = 2™.
Basically largest number of points a hypothesis class can produce
all dichotomies of. Can be infinite, can be 0. A linear perceptron
classifier with d parameters (d-dimensional weight vectors) has a
VC dimension of d. For example, 2d linear perceptron (three
weights - one for each dimension and one fictitious dimension =
bias) has VC dimension of 3.

Ensemble method that trains multiple learns on weighted sample
points and weights learner. (misclassified points = increased
weights, accurate learners = increased weights). Find classifier G
and coefficient S to minimize

Risk = L S°7 | L(M(X;),y:) with M(X;) = Y1 BiGe(X5)
AdaBoost metalearner uses L(p,£) = e~ *¢

'L”ET-H) = “’Z(T) exp(—Br yi Gr(X:)), Br = 3 1n (71*0”7”)

errp
(T)

% metalearner: h(z) = sign(X:f:1 BtGi(z))
o1 W

|Neural Nets |

Multi-layered perceptron, each layer puts outputs of previous layer
linear function and then activation function. Minimize loss via
gradient descent

errp =

’Principal Component Analysis

PCA only makes linear relations. Low-rank approximation is lossy
feature selection: you lose lower variance components yet select out
low-singular values (often “noise” components)

bodl

Clustering

NP-hard: find argmin, Z?:l Zyj:i 11X — il

K-means: alternate between fixed y;’s update p;’s and vice versa.
Halt when step 2 changes no assignments. Both steps decrease
objective fn unless they change nothing; alg must terminate.
Initialization: Forgy method (choose k random points to be
centroids). Can also use the (worse) random partitions - randomly
assign each point to a cluster. K-medioids: K-means, but instead of
using mean, use medioid, sample point minimizing total distance to
other points in cluster.

Hierarchical clustering: creates a tree, every subtree is a cluster.
Bottom-up (agglomerative) start with each point a cluster;
repeatedly fuse pairs minimizing d(A, B). Linkage functions:
complete: d(A, B) = max{d(w,z) : w € A,z € B}

single: d(A, B) = min{d(w,z) : w € A,z € B}

average: d(A, B) = WI\BI Y wed 2zep dist(w, x)

centroid: d(A, B) = dist(pa,uB)

Top-down (divisive) starts with single cluster, repeatedly splits

Miscellaneous

NP-Hard to find optimal linear classifier

Bayes vs. GDA Bayes uses true mean/variance, while GDA uses
sample mean/variance. True mean/variance
equal 7 Sample mean/variance equal

[{z, y)| < [l - lyll
Graph:

Cauchy-Schwarz
Sigmoid Function:

1
s(y) = Tfe—7

1

Only ridge regression has one unique optimum
(not Least Squares, Lasso, or Logistic).
Training on less data can improve training accu-
racy, training on more data can improve valida-
tion/test accuracy.

Unique Optimum

Training Data:
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