Classification

k-Nearest Neighbors

kNNs are bounded by $\leq 2 \mathrm{x}$ the Bayes optimal error,
$N, k \rightarrow \infty, k / N \rightarrow 0$.

Edge Case Robustness Fit Validation

Training Set Validation Set Test Set
Isocontour of f
Isotropic Gaussian
Anisotropic Gaussian

Perceptron

Model/rule: 1 if $\vec{X}_{i} \cdot \vec{w} \geq 0$ elif $\vec{X}_{i} \cdot \vec{w} \leq 0 \Longrightarrow-1$.
Loss: $L\left(z, y_{i}\right)=0$ if $y_{i} z \geq 0$ else $-y_{i} z$, ($z=$ pred, $y_{i}=$ true ans $)$.
$R(w)=\sum_{i=1}^{n} L\left(X_{i} \cdot w, y_{i}\right)=\sum_{i \in V}-y_{i} X_{i} \cdot w$
Gives some linear boundary; if data is linearly separable, correctly classifies all data in at most $O\left(\frac{r^{2}}{\gamma^{2}}\right)$ iterations.

Support Vector Machines

Hard-Margin: $\min _{\vec{w}, b}\|\vec{w}\|_{2}^{2}$, s.t. $y_{i}\left(\vec{w}^{\top} \overrightarrow{x_{i}}-b\right) \geq 1 \forall i$
Fails w/ non-linearly sep. data. Margin size $=\frac{1}{\|w\|}$, Slab size $=\frac{2}{\|w\|}$ Hyperplane $H=\{x: w \cdot x=-\alpha\}$
flat, infinite, $\operatorname{dim}(d-1)$ plane
$x, y \in H$
Support Vectors
$2 \mathrm{pts} \mathrm{w} /$ same features but diff classes Generalizes better to test data Better training classification.
Hold back data subset as validation set. Train multiple times w/ diff hyperparams Choose what is best on validation set. Used to learn model weights. Tunes hyperparameters (ex. $k \in k \mathrm{NN}$). used as FINAL evaluation of model.
$L_{c}=\{x \mid f(x)=c\}$, with isovalue c.
Same var in ea dir: $\Sigma=c I$.
Allows diff amnts of var along diff dirs, $\Sigma \succ 0$.

Soft-Margin

Allows misclassifications: $\min _{\vec{w}, b, \xi_{i}} \frac{1}{2}\|\vec{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}$ s.t.

$$
y_{i}\left(\vec{w}^{\top} \overrightarrow{x_{i}}-b\right) \geq 1-\xi_{i}, \quad \forall i ; \quad \xi_{i} \geq 0, \quad \forall i
$$

Small C: maximize margin, underfitting, less sensitive, more flat. Big C: minimize margin, overfitting, very sensitive, more sinuous. $C \rightarrow \infty \Longrightarrow$ Soft-Margin \rightarrow Hard-Margin. Note $C \geq 0$.

Generative

Want to learn everything about data before you classify: the priors $\hat{\pi}_{i}=\operatorname{Pr}\left(Y=C_{i}\right)$ and cond. dist $\mathbb{P}\left(X \mid Y=C_{i}\right)$ Posterior: $\mathbb{P}\left(Y=C_{i} \mid X\right)=\frac{\mathbb{P}\left(X \mid Y=C_{i}\right) \cdot \mathbb{P}\left(Y=C_{i}\right)}{\mathbb{P}(X)}$
Logistic $\frac{1}{1+e^{-h(x)}}$, where $h(x)$ is linear in terms of features. True Function: in LDA but not QDA (where $h(x)$ is quadratic).
GDA: Assumes each class models a Gaussian distribution. $Q_{C}(x)=-\frac{\left\|x-\mu_{C}\right\|^{2}}{2 \sigma^{2}}-d \ln \sigma_{C}+\ln \pi_{C}=$ $\ln \left(\sqrt{2 \pi}^{d} f_{C}(x) \pi_{C}\right)=-\frac{1}{2}\left(x-\mu_{C}\right)^{\top} \Sigma_{C}^{-1}\left(x-\mu_{C}\right)$
QDA: Works with any number of classes; $\frac{d(d+3)}{2}+1$ params. LDA: when variances are equal; $d+1$ params.
Isotropic:
QDA: $\widehat{\sigma}^{2}=\frac{1}{d n} \sum_{i: y_{i}=C}\left\|x_{i}-\widehat{\mu_{c}}\right\|^{2}$
LDA: $\widehat{\sigma}^{2}=\frac{1}{d n} \sum_{C} \sum_{i: y_{i}=C}\left\|x_{i}-\widehat{\mu_{c}}\right\|^{2}$
Anisotropic:
QDA: $\widehat{\Sigma}_{c}=\frac{1}{n_{c}} \sum_{i: y_{i}=C}\left(X_{i}-\widehat{\mu_{c}}\right)\left(X_{i}-\widehat{\mu_{c}}\right)^{\top}$

LDA: $\widehat{\Sigma}=\frac{1}{n} \sum_{C} \sum_{i: y_{i}=C}\left(X_{i}-\widehat{\mu_{c}}\right)\left(X_{i}-\widehat{\mu_{c}}\right)^{T}$

Discriminative

Want to learn a few things before trying to classify
Only tries to model $\mathbb{P}(Y \mid X)$ from training data
Logistic Reg (2 classes): For a training point
 our model of the posterior $P(Y=1 \mid x)$. MLE on this leads to the cross entropy loss function (which is convex!), namely

$$
L(w)=-\sum y_{i}\left(\ln p_{i}+\left(1-y_{i}\right) \ln \left(1-p_{i}\right)\right)
$$

Note: $P(Y=1 \mid x)=\frac{1}{1+\exp \left(-w^{T} x\right)} ; s^{\prime}(\gamma)=s(\gamma)(1-s(\gamma))$
Decision Boundary: of the form $w^{T} x>c_{1}$ thus must be linear Though probability predictions are non-linear, actual boundary is linear. Log Reg always separates linearly separable points. Softmax Reg: logistic regression for multiple classes

Probability

Multivariate Gaussian PDF:
$f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\frac{\exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2 \pi)^{k}|\boldsymbol{\Sigma}|}}$

MLE (Maximum Likelihood Estimate)

We have $A, B, C, D . P(A \mid B)>P(A \mid C)>P(A \mid D$ $\Longrightarrow B$ is the MLE of A. MLE Estimate of Anisotropic can be PSD. $\hat{\theta}_{M L E}(x)=\underset{\theta}{\arg \max } \Pi f(x \mid \theta)=\arg \max \ln \mathcal{L}(\theta ; x)$
Mean is unbiased; Variance is biased (usually underestimate) Predicts parameter which max the probability of the data. Implicitly assumes uniform prior

MAP (Maximum a Posteriori)

We have $A, B, C, D . \mathbb{P}(A \mid B)>\mathbb{P}(C \mid B)>\mathbb{P}(D \mid B)$
$\Longrightarrow A$ is the MAP of B.
$\hat{\theta}_{M A P}=\underset{\theta}{\arg \max } f(\theta \mid x)=\underset{\theta}{\arg \max } f(x \mid \theta) \cdot g(\theta)$
Predicts the parameter which maximizes the conditional probability of the parameter given the data.
Should be used when you have the prior probabilities
MLE $=$ MAP when all parameters have equal prior probability.
The axis lengths of Gaussian Isocontours are σ_{i} s.t.
$\sigma^{2}(X)=\operatorname{Var}(X)$. Independent \Longleftrightarrow uncorrelated (only for
Multivariate Gaussian).

Bayesian Risk

L (loss function) is symmetric: pick class with max posterior prob. L is asymmetric: minimize $\mathbb{E}[L$ (true class, prediction) | data] or pick max loss-weighted posterior prob.

The risk for r is the expected loss over all values of x, y. Equals to 0 when class distros don't overlap or prior prob for one class is 1 .

$$
\begin{aligned}
R(r) & =\mathbb{E}[L(r(X), Y)] \\
& =\sum_{x}\left(\sum_{c \in\{-1,1\}} L(r(x), c) P(Y=c \mid X=x)\right) P(X=x) \\
= & \sum_{c \in\{-1,1\}}\left(P(Y=c) \sum_{x} L(r(x), c) P(X=x \mid Y=c)\right) \\
& R(\hat{y}=i \mid x)=\sum_{j=1}^{C} \lambda_{i j} P(Y=j \mid x)
\end{aligned}
$$

The Bayes decision rule aka Bayes classifier is the fn r^{*} that minimizes functional $R(r)$. Assuming $L(z, y)=0$ for $z=y$:
$r^{*}(x)=\left\{\begin{aligned} 1 & \text { if } L(-1,1) P(Y=1 \mid X=x)>L(1,-1) P(Y=-1 \mid X=x) \\ -1 & \text { otherwise }\end{aligned}\right.$

Regression Methods

Model: $y=X w$, Loss Function: least squares, $n \in N(X)$

Name	Objective	Solution				
OLS	$\frac{1}{n}\\|Y-X w\\|_{2}^{2}$	$\begin{aligned} & w^{*}=\left(X^{\top} X\right)^{\dagger} X^{\top} y \in \\ & X^{\dagger} y+n \end{aligned}$				
Ridge: Assumes Gaussian Priors	$\frac{1}{n}\\|Y-X w\\|_{2}^{2}+\lambda\\|w\\|_{2}^{2}$	$\begin{aligned} & w^{*}= \\ & n \lambda I)^{-1} X^{\top} y \end{aligned}$				
LASSO	$\frac{1}{n}\\|Y-X w\\|_{2}^{2}+\lambda\\|w\\|_{1}$	No closed form				

Linear Algebra

Matrix Calculus

$\nabla_{\vec{x}} \vec{w}^{\top} \vec{x}=\left(\frac{\partial \vec{w}^{\top} \vec{x}}{\partial \vec{x}}\right)^{\top}=\vec{w} \quad \nabla_{\vec{x}}\left(\vec{w}^{\top} A \vec{x}\right)=A^{\top} \vec{w}$

$\nabla_{A} \vec{w}^{\top} A \vec{x}=\vec{w} \vec{x}^{\top}$	$\nabla_{\vec{x}}\left(\vec{x}^{\top} A \vec{x}\right)=\left(A+A^{\top}\right) \vec{x}$		
$\nabla_{\vec{x}}^{2}\left(\vec{x}^{\top} A \vec{x}\right)=A+A^{\top}$	$\nabla_{\vec{x}}(\alpha \vec{y})=\left(\nabla_{\vec{x}} \alpha\right) \vec{y}^{\top}+\alpha \nabla_{\vec{x}} \vec{y}$		
$\nabla_{\vec{x}} \vec{f}(\vec{y})=\left(\nabla_{\vec{x}} \vec{y}\right)\left(\nabla_{\vec{y}} \vec{f}(\vec{y})\right)$	$\nabla_{\vec{x}}(\vec{y} \cdot \vec{z})=\left(\nabla_{\vec{x}} \vec{y}\right) \vec{z}+\left(\nabla_{\vec{x}} \vec{z}\right) \vec{y}$		
$\nabla_{\vec{x}} C \vec{y}(\vec{x})=\left(\nabla_{\vec{x}} \vec{y}(\vec{x})\right) C^{\top}$	$\frac{\partial\\|\vec{x}\\|_{2}^{2}}{\partial \vec{x}}=\frac{\partial\left(\vec{x}^{\top} \vec{x}\right)}{\partial \vec{x}}=2 \vec{x}$		

$$
\nabla_{\vec{y}}(\vec{y}-A \vec{x})^{\top} W(\vec{y}-A \vec{x})=2 W(\vec{y}-A \vec{x})
$$

$$
\nabla_{\vec{x}}(\vec{y}-A \vec{x})^{\top} W(\vec{y}-A \vec{x})=-2 A^{\top} W(\vec{y}-A \vec{x})
$$

$$
\nabla_{\vec{w}}\left(\|X \vec{w}-\vec{y}\|_{2}^{2}+\lambda\|\vec{w}\|_{2}^{2}\right)=2 X^{\top} X \vec{w}-2 X^{\top} \vec{y}+2 \lambda \vec{w}
$$

Matrix A is Positive Semi-Definite iff

(a) $\forall \vec{x} \neq \overrightarrow{0} \in \mathbb{R}^{n}, \vec{x}^{\top} A \vec{x} \geq 0$. Symmetric.
(b) All eigenvalues of A are non-negative $\left(\lambda_{i} \geq 0\right)$.
(c) \exists unique matrix $L \in \mathbb{R}^{n \times n}$ such that $A=L L^{\top}$ (Cholesky decomposition).

PSD Example: $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$, with $\lambda=3,1$. $L=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$ All diagonal entries of A are non-negative and $\operatorname{Tr}(A) \geq 0$. Sum of all the entries ≥ 0. $\operatorname{Var}(M x)=M \operatorname{Var}(x) M^{T}, M$ is constant. $M \succ 0, N \succ 0, M-N \succeq 0 \Longrightarrow N^{-1}-M^{-1} \succeq 0$ $M \succeq 0, N \succeq 0 \Longrightarrow M-N \succeq 0 \Longleftrightarrow \lambda_{\text {min }}(M)>\lambda_{\max }(N)$. $A=A^{\frac{1}{2}} A^{\frac{1}{2}}=U \Lambda^{\frac{1}{2}} \Lambda^{\frac{1}{2}} U^{\top}, A^{\frac{1}{2}}=U \Lambda^{\frac{1}{2}} U^{\top}$
A function is convex iff Hessian is PSD. Strict Convexity: $(\forall 0<t<1), f\left(t x_{1}+(1-t) x_{2}\right)<t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right)$

$$
\begin{aligned}
& \text { Covariance Matrix } \\
& \Sigma=\frac{1}{n} \hat{X}^{\top} X=\left[\begin{array}{cccc}
\operatorname{Var}\left(X_{1}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{d}\right) \\
\vdots & \vdots & \ddots & \operatorname{Cov}\left(X_{2}, X_{d}\right) \\
\operatorname{Cov}\left(X_{d}, X_{1}\right) & \operatorname{Cov}\left(X_{d}, X_{2}\right) & \cdots & \operatorname{Var}\left(X_{d}\right)
\end{array}\right]
\end{aligned}
$$

$=\mathbb{E}\left[(X-\mu)^{\top}(X-\mu)\right]$ where $X \in \mathbb{R}^{n \times d}$, all diag entries >0
Symmetric, PSD $\Longrightarrow \exists \Sigma=V \Lambda V^{\top}$ by Spectral Theorem. PD \Longrightarrow symmetric in this class. Eigenvectors are orthogonal directions along which points are uncorrelated. $\Sigma^{-1}=V \Lambda^{-1} V^{\top}=\sum_{i} \frac{1}{\Lambda_{i i}} v_{i} v_{i}^{\top}$
Spectral Theorem: $A=V \Lambda V^{\top}$. All real + symmetric $n \times n$ matrices have real eigenvalues and n eigenvectors that are mutually orthogonal: $v_{i}^{\top} v_{j}=0 \quad \forall i \neq j$.

Norm Ball

ℓ_{0} and ℓ_{1} encourage sparsity (more than ℓ_{2}).

Fundamental Theorem of Linear Algebra

$\left(N(A)^{\perp}=R\left(A^{\top}\right)\right) \oplus\left(N\left(A^{\top} A\right)=N(A)=R\left(A^{\top}\right)^{\perp}\right)=\mathbb{R}^{n}$ $\left(N\left(A^{\top}\right)^{\perp}=R(A)\right) \oplus\left(N\left(A^{\top}\right)=R(A)^{\perp}\right)=\mathbb{R}^{m}$
Rank-nullity Theorem: $\operatorname{dim}(R(A))+\operatorname{dim}(N(A))=n$ Jensen's Inequality: If $f(x)$ is strictly convex, $\mathbb{E}[f(x)]>f(\mathbb{E}[x])$. $\operatorname{dim}(\operatorname{Row}(X))=\operatorname{dim}\left(R\left(X^{\top}\right)\right)=\operatorname{rank}\left(X^{\top}\right)=\operatorname{rank}(X)$. $\operatorname{Row}\left(X^{\top} X\right)=R\left(X^{\top} X\right)=\operatorname{Row}(X)=R\left(X^{\top}\right)$

Update Rule

Gradient Descent: $w^{(t+1)} \leftarrow w^{(t)}-\eta \nabla_{w} J\left(w^{(t)}\right)$
Logistic Reg: $\quad w^{(t+1)} \leftarrow w^{(t)}+\epsilon X^{\top}\left(y-s\left(X w^{(t)}\right)\right)$

Newton's Method: $\quad w^{(t+1)} \leftarrow w^{(t)}-\left(\nabla_{w}^{2} J\left(w^{(t)}\right)\right)^{-1} \nabla_{w} J\left(w^{(t)}\right)$ *** Note: If J quadratic, Newton's method only needs one step to find exact solution. Newton's Method doesn't work for most nonsmooth functions, and is generally faster than BGD/SGD.

Stochastic GD: $\quad w \leftarrow w-\epsilon \nabla_{w} J(w)_{i}$ for some $i \in U([1, \ldots, n])$ Logistic Reg: $\quad w \leftarrow w+\epsilon\left(y_{i}-s\left(X_{i} \cdot w\right)\right) X_{i}$

Cost Functions

$y_{i}=f\left(X_{i}\right)+\epsilon_{i}: \epsilon_{i}$ from Gaussian, all ϵ_{i} same mean, all y_{i} same var General: $\quad J=\sum_{i=1}^{n} L\left(X_{i} \cdot w, y_{i}\right)$
Linear: $\quad J=\sum_{i=1}^{n=1}\left(X_{i} \cdot w+\alpha-y_{i}\right)^{2}=\|X w-y\|_{2}^{2}$
Logistic: $\quad J=-\sum_{i=1}^{n}\left(y_{i} \ln s\left(X_{i} \cdot w\right)+\left(1-y_{i}\right) \ln \left(1-s\left(X_{i} \cdot w\right)\right)\right)$ Weight LS: $J=\sum_{i=1}^{n} w_{i}\left(X_{i} \cdot w-y_{i}\right)^{2}=(X w-y)^{\top} \Omega(X w-y)$

ROC Curve

Design Matrix

Centering: \quad subtracting μ^{\top} from each row of $X: X \rightarrow \dot{X}$ Decorrelating: Applying rotation $Z=\dot{X} V$ where $\operatorname{Var}(X)=$ Applying rotation $Z=X V$ where $\operatorname{Var}(X)=$
$V \Lambda V^{\top}$. Covariance matrix of Z is Λ (diagonal) $W=\dot{X} \operatorname{Var}(X)^{-1 / 2}\left(\Sigma^{-1 / 2}\right.$:ellipsoid to sphere $)$ Perform centering, and then sphering
Sphering:

Bias-Variance Tradeoff

Statistical Bias: $\mathbb{E}[\hat{\theta}-\theta]=\mathbb{E}[\hat{\theta}]-\theta$.
Bias: error due to inability of hypothesis h to fit g perfectly e.g., fitting quadratic g with a linear h
Variance: error due to fitting random noise in data e.g., we fit linear g with a linear h, yet $h \neq g$.
Overfitting: Low Bias, High Variance
Underfitting: High Bias, Low Variance.
Adding a feature usually increases variance [don't add a feature unless it reduces bias more]. Adding a feature results in a non-increasing bias.
Forward/Backward stepwise selection aren't guaranteed to find optimal features. Backward stepwise selection looks at $d^{\prime}-1$ features at a time, where d^{\prime} is current num of features (one at a time). Use Forward selection if we think few features important, Backward selection if many features important.
higher residuals \Longrightarrow higher bias
higher complexity \Longrightarrow higher variance
$\operatorname{Var}(h(z))=E\left[(h(z)-E[h(z)])^{2}\right] \approx \sigma^{2} \frac{d}{n}$

Bias-Variance Decomposition:

Model Risk $=\mathbb{E}[L(h(z), \gamma)]=\mathbb{E}\left[(h(z)-\gamma)^{2}\right]$

$$
=\underbrace{(\mathrm{E}[h(z)]-g(z))^{2}}+\underbrace{\operatorname{Var}(h(z))}+\underbrace{\operatorname{Var}(\epsilon)}
$$

$$
\underbrace{\text { variance of method }}_{\text {bias }^{2} \text { of method }} \underbrace{}_{\text {irreducible error }}
$$

where $\mathrm{E}[\gamma]=g(z) ; \operatorname{Var}(\gamma)=\operatorname{Var}(\epsilon)$.

Note: the model determines Bias-Variance Tradeoff, not the algorithm used to solve the model/optimization problem.

Increasing Model Complexity

Isocontour/Voronoi Diagrams

LDA: same variance; decision boundary is linear

QDA: different variance; decision boundary is curved towards class(es) w/ lower variance

Quadratic Form: $x^{\top} A^{-2} x=\left\|A^{-1} x\right\|_{2}^{2}$ is an ellipsoid with axes $v_{1}, v_{2}, \ldots v_{n}$ (eigenvectors of A) and radii $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (eigenvalues of A). Note that $A>0$.
Gaussian with covariance matrix $\Sigma=\frac{1}{n} \hat{X}^{\top} \hat{X}$ isocontours with radii of length $\sqrt{\lambda_{i}(\Sigma)}=\sigma_{i}(X)$

Decision Trees

Tree with each node denoting a split over some feature. Leaf node specifies class. deep decision tree $=$ overfit $=$ high variance

Random Forests

At each node, take rnd sample of m features (out of d).
Classification: $m_{\text {init }} \approx \sqrt{d}$
Regression: $m_{\text {init }} \approx \frac{d}{3}$
Smaller $m=$ less features $=$ less complex model $=$ more bias

Kernels

Can speedup algorithms such as SVMs, k NN, Regression (linear \& logistic), k-means, etc.
$w=X^{\top} a=\sum_{i=1}^{n} a_{i} X_{i}$ Substitute this into the algorithm so we have to optimize n weights a instead of d weights w
Kernel Ridge Regression: Center X and y so means are 0 , $X_{i, d+1}=1$. Solve normal equations: $\left(X^{\top} X+\lambda I\right) w=X^{\top} y$ If a is a solution to $\left(X^{\top} X+\lambda I\right) a=y$,
$X^{\top} y=X^{\top} X X^{\top} a+\lambda X^{\top} a=\left(X^{\top} X+\lambda I\right) X^{\top} a \Longrightarrow w=X^{\top} a$ The dual: $\min \left\|X X^{\top} a-y\right\|^{2}+\lambda\left\|X^{\top} a\right\|^{2}$
Test phase: $h(z)=w^{\top} z=a^{\top} X z=\sum_{i=1}^{n} a_{i}\left(X_{i}^{\top} z\right)$, if $X_{i}^{\top} z$ are precomputed, it takes $O(n)$ time to evaluate h vs $O(d)$ time for primal method.
kernel fn: $k(x, z)=x^{\top} z$, kernel mtx: $K=X X^{\top}\left(K_{i j}=k\left(X_{i}, X_{j}\right)\right)$ kernel matrix must be PSD + symmetric
Solve $(K+\lambda I) a=y O\left(n^{3}\right)$, test $h(z)=\sum a_{i} k\left(X_{i}, z\right) O(n d)$ time Dual: $O\left(n^{3}+n^{2} d\right.$), Primal: $O\left(d^{3}+d^{2} n\right)$, dual is better when $d>n$. Kernel Trick: Polynomial kernel $=k(x, z)=\left(x^{\top} z+1\right)^{p}$ Can compute $k(x, z)=\Phi(x)^{\top} \Phi(z)$ in $O(d)$ time instead of $O\left(d^{p}\right)$
$\ln (a b)=\ln (a)+\ln (b) ; \quad a^{x+y}=a^{x} \cdot a^{y}$
Credits: Jonny Pei, Elden Ren, Rahul Shah

Enables us to implicitly handle polynomial features efficiently

 Kernel Perceptrons:$w \leftarrow y_{1} \Phi\left(X_{1}\right)$: while some $y_{i} \Phi\left(X_{i}\right) \cdot w<0, w \leftarrow w+\epsilon y_{i} \Phi\left(X_{i}\right)$ for each test pt $z, h(z) \leftarrow w \cdot \Phi(z)$
Let $\Phi(X)$ be $x \times D$ matrix with rows $\Phi\left(X_{i}\right)^{\top}$
Dualize with $w=\Phi(X)^{\top} a, a_{i} \leftarrow a_{i}+\epsilon y_{i}$,
$h(z)=\sum_{i=1}^{n} a_{j}+k\left(X_{i j}, z\right)$
$\Phi\left(X_{i}\right) \cdot w=(\Phi(X) w)_{i}=\left(\Phi(X) \Phi(X)^{\top} a\right)_{i}=(K a)_{i}$
$a \leftarrow\left[\begin{array}{llll}y_{1} & 0 & \cdots & 0\end{array}\right]^{\top}:$ while some $y_{i}(K a)_{i}<0, a_{i} \leftarrow a_{i}+\epsilon y_{i}$ $O\left(n^{2} d\right)$ to kernel mtx $O(1)$ to update $a, O(n)$ to update $K a$

Learning Theory

Range Space (P, H): $\mathrm{P}=$ set of all possible train/test pts (ex. \mathbb{R}^{d}) $\mathrm{H}=$ set of all possible hypotheses Dichotomy: split of input data into two separate classes, not necessarily linear decision boundary. Shatter Function: $\Pi_{H}(X)=|\{X \cap h: h \in H\}|=$ maximum number of dichotomies hypothesis class H can produce in particular set of points $X . \Pi_{H}(n)=\max _{|X|=n, X \subseteq P} \Pi_{H}(X)=$ maximum number of dichotomies hypothesis class H can produce amongst a set of n data points and is only ever 2^{n} (known as shattering) or polynomial in n. VC Dimension $=$ the largest number of points D s.t. $\Pi_{H}(D)=2^{n}$. Basically largest number of points a hypothesis class can produce all dichotomies of. Can be infinite, can be 0 . A linear perceptron classifier with d parameters (d-dimensional weight vectors) has a VC dimension of d. For example, $2 d$ linear perceptron (three weights - one for each dimension and one fictitious dimension $=$ bias) has VC dimension of 3.

AdaBoost

Ensemble method that trains multiple learns on weighted sample points and weights learner. (misclassified points $=$ increased weights, accurate learners $=$ increased weights). Find classifier G_{T} and coefficient β_{T} to minimize
Risk $=\frac{1}{n} \sum_{i=1}^{n} L\left(M\left(X_{i}\right), y_{i}\right)$ with $M\left(X_{i}\right)=\sum_{t=1}^{T} \beta_{t} G_{t}\left(X_{i}\right)$ AdaBoost metalearner uses $L(\rho, \ell)=e^{-\rho \ell}$
$w_{i}^{(T+1)}=w_{i}^{(T)} \exp \left(-\beta_{T} y_{i} G_{T}\left(X_{i}\right)\right), \beta_{T}=\frac{1}{2} \ln \left(\frac{1-\operatorname{err}_{T}}{\operatorname{err}_{T}}\right)$
$\operatorname{err}_{T}=\frac{\sum_{y_{i} \neq G_{T}\left(x_{i}\right)} w_{i}^{(T)}}{\sum_{i=1}^{n} w_{i}^{(T)}}$. metalearner: $h(z)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} G_{t}(z)\right)$

Neural Nets

Multi-layered perceptron, each layer puts outputs of previous layer linear function and then activation function. Minimize loss via gradient descent

Principal Component Analysis

PCA only makes linear relations. Low-rank approximation is lossy feature selection: you lose lower variance components yet select out low-singular values (often "noise" components)
$X X^{\top}$

Clustering

NP-hard: find $\operatorname{argmin}_{y} \sum_{i=1}^{k} \sum_{y_{j}=i}\left\|X_{j}-\mu_{i}\right\|^{2}$
K-means: alternate between fixed y_{j} 's update μ_{i} 's and vice versa Halt when step 2 changes no assignments. Both steps decrease objective fn unless they change nothing; alg must terminate. Initialization: Forgy method (choose k random points to be centroids). Can also use the (worse) random partitions - randomly assign each point to a cluster. K-medioids: K-means, but instead of using mean, use medioid, sample point minimizing total distance to other points in cluster.
Hierarchical clustering: creates a tree, every subtree is a cluster.
Bottom-up (agglomerative) start with each point a cluster;
repeatedly fuse pairs minimizing $d(A, B)$. Linkage functions:
complete: $d(A, B)=\max \{d(w, x): w \in A, x \in B\}$
single: $d(A, B)=\min \{d(w, x): w \in A, x \in B\}$
average: $d(A, B)=\frac{1}{|A||B|} \sum_{w \in A} \sum_{x \in B} \operatorname{dist}(w, x)$
centroid: $d(A, B)=\operatorname{dist}\left(\mu_{A}, \mu_{B}\right)$
Top-down (divisive) starts with single cluster, repeatedly splits

Miscellaneous

NP-Hard to find optimal linear classifier

Bayes vs. GDA

Cauchy-Schwarz
Sigmoid Function:
$s(\gamma)=\frac{1}{1+e^{-\gamma}}$
mean/variance, while GDA uses sample mean/variance. True mean/variance equal \nRightarrow Sample mean/variance equal
$|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$
Graph:

Unique Optimum
Training Data:

Only ridge regression has one unique optimum (not Least Squares, Lasso, or Logistic).
Training on less data can improve training accuracy, training on more data can improve validation/test accuracy.

