
Lecture Notes
CS 160 with Bjoern Hartmann

Spring 2023

Contents

1 Tuesday, January 17th: Welcome to User Interface Design and Development 18

1.1 The dangers of poor UI/UX . 18

1.2 Where did we start . 18

1.2.1 The Commandline . 18

1.3 Course Staff and Communication . 18

1.4 Enrollment . 19

1.5 This Course . 19

1.6 Human-Computer Interaction (HCI) . 19

1.7 User Interfaces (UI) . 20

1.7.1 Why Study User Interfaces? . 20

1.8 Interface Design Cycle . 20

1.9 Contextual Inquiry . 21

1.10 Rapid Prototyping . 21

1.11 Evaluation . 21

1.12 Goals of the Course . 21

1.13 Teams . 22

1.14 Course Mechanics . 22

1.15 Office Hours . 22

1.16 Sections . 22

1.17 Readings . 22

1.18 Grading . 23

1.18.1 Late Assignments . 23

2 Thursday, January 19th: The Design Cycle 24

2.1 UI Critique: Font Selection . 24

2.2 BCourses Logistics . 24

2.3 Where does design fit into the larger process? . 24

2.3.1 Oscillations over Project Lifespan . 24

2.3.2 Divergent vs Convergent Phases . 24

2.3.3 Waterfall Model (Software Engineering) . 25

2.3.4 Agile Software Development . 25

2.4 Shopping Cart Video (from abc) . 25

2.5 Methods . 25

2.5.1 Talking to people . 25

2.5.2 Stakeholder Map . 26

2.6 Brainstorming . 26

3 Tuesday, January 24th: Sketching 27

3.1 Logistics: Discussion Signup . 27

3.2 Sketching, Brainstorming, Critique . 27

3.2.1 Case Study: Tesla Design . 27

3.3 Visions for the future of Car Designs . 27

3.3.1 Apple Touchscreen Car Integration (from WWDC) 27

3.3.2 INEOS Grenadier . 27

3.4 Sketching . 28

3.4.1 Design Journals . 28

3.4.2 Storyboard . 28

3.5 Brainstorming . 28

2

3.6 Critique . 28

4 Thursday, January 26th: Task Analysis 30

4.1 Administrative Details . 30

4.2 ChatGPT vs Google . 30

4.3 XEROX PARC . 30

4.3.1 XEROX 8200 . 30

4.3.2 Observation Techniques . 31

4.4 Task Analysis . 31

4.4.1 Case Study: BART Ticket Machine . 31

4.4.2 Task Analysis Questions . 31

4.5 Old and New Tasks . 32

4.6 Learning Tasks . 32

4.7 Where is the task . 32

4.7.1 Geography of the BART Station . 32

4.8 Other Tools . 32

4.9 When things go wrong . 32

4.9.1 Japanese QR Code Vending Machine . 32

5 Tuesday, January 31st: In-Class Team Brainstorm 34

5.1 Logistics: Assignments due! . 34

5.2 Team Project . 34

5.2.1 Intelligent User Interfaces . 34

5.2.2 Designing Inclusive Technologies . 35

5.3 In-Class Team Brainstorm: Meeting time! . 35

6 Thursday, February 2nd: Contextual Inquiry, Conceptual Models 1 36

3

6.1 Case Study: Apple Watch . 36

6.1.1 Case Study: Calculators . 36

6.2 Reminder: Assignments . 36

6.3 Contextual Inquiry . 36

6.3.1 Goals . 36

6.3.2 Context . 36

6.3.2.1 Why not just interview folks? . 37

6.3.3 Affordances . 37

6.3.4 Signifiers . 37

6.3.4.1 Case Study: Doors . 37

6.3.5 Universal Signals . 37

6.3.6 Incorrect signifiers . 37

7 Tuesday, February 7th: Conceptual Models (continued) 38

7.1 Make Controls Visible . 38

7.1.1 Don’t overload the User . 38

7.1.2 Make Controls Clear . 38

7.1.3 Case Study: Stovetop Controls . 38

7.1.4 Use Transfer Learning . 39

7.1.5 Provide Feedback . 39

7.2 Action Cycle . 40

7.2.1 Gulf of Evaluation . 40

7.2.2 Gulf of Execution . 40

7.3 Interface Languages . 41

7.3.1 Semantic & Articulatory Distance . 41

7.3.2 Case Study: Adding Autocomplete . 41

4

7.3.3 Spell and Grammar Suggestions . 41

7.4 Direct Manipulation . 41

7.5 Metaphor . 42

7.6 Modes . 42

7.6.1 Fixing the Problems with Modes . 42

7.6.2 Quasimodes . 42

8 Thursday, February 9th: Human Information Processing 44

8.1 Galileo AI . 44

8.2 Review: Modes . 44

8.2.1 Keyboard Modes: QWERTY, QWERTZ, AZERTY 44

8.2.2 Air France Flight 447 . 44

8.3 Modeling Human Performance . 44

8.3.1 Motivation . 44

8.3.2 Model Information Processor Theory . 45

8.3.2.1 Perceptual Processor . 45

8.3.2.1.1 Michotte Demonstration 45

8.3.2.2 Memory . 45

8.3.2.2.1 Attention Span . 45

8.3.2.2.2 Long-Term Memory . 46

8.3.2.3 Cognitive Processor . 46

8.3.2.3.1 Flight Eastern 401 . 46

8.3.2.3.2 Stroop Effect . 46

8.3.2.3.3 Input Stratification . 46

8.3.3 Stage Theory . 46

8.3.3.1 Recognition over Recall . 46

5

8.4 Decision Making and Learning . 47

8.4.1 Hick’s Law: Decision Paralysis . 47

8.4.2 Power Law of Practice . 47

8.5 Pointing . 47

8.5.1 Fitts’ Law: Distance and Target Size . 47

8.5.1.1 Index of Difficulty . 48

8.5.1.2 Fitts’ Law Tasks . 48

8.5.2 The Power of Right-clicking: having options come to you 48

8.6 Bandwidth of Human Muscle Groups . 48

9 Tuesday, February 14th: Input 50

9.1 Interface Critique . 50

9.1.1 Dual-Screen Devices . 50

9.1.1.1 Microsoft Research: Codex . 50

9.1.1.2 Microsoft Research: Courier . 50

9.2 Administravia: Midterm 1 . 50

9.2.1 Scope . 50

9.3 Input Devices . 51

9.3.1 Text Entry: Keystroke Devices . 51

9.3.1.1 DVORAK vs QWERTY . 51

9.3.1.2 Mobile Difficulty . 51

9.3.1.3 Soft Keys . 52

9.3.1.4 Drawing/Handwriting Recognition 52

9.3.1.5 Graffiti . 52

9.3.1.6 EdgeWrite . 52

9.3.1.7 Stroke writing . 53

6

9.3.1.8 Speech Dictation . 53

9.4 Important Device Properties . 53

9.4.1 Indirect vs Direct . 53

9.4.2 C:D Ratio . 53

9.4.3 Device Acquisition Time . 54

9.5 Quadrature Encoding . 54

9.5.1 Optical Mice . 54

9.5.2 Trackpoint . 54

9.5.3 Resistive Touchscreens . 54

9.5.4 Capacitive Touchscreens . 54

9.5.4.1 Exploit the edges . 54

10 Thursday, February 16th: Input (contd.) and Prototyping 55

10.1 In the news: Adobe Acquisition of Figma . 55

10.2 Input Devices (contd.) . 55

10.2.1 Buxton’s 3-State Model of Input . 55

10.3 Prototyping Theory . 55

10.4 The Value of Prototyping . 56

10.4.1 Epistemic actions . 56

10.4.2 The Value of Surprise . 56

10.5 Why Prototype? . 57

10.6 Paper Prototyping . 57

10.6.1 Wizard of Oz Testing . 57

10.7 Testing Device-Based Interfaces . 57

10.8 Prototyping in Software . 58

10.8.1 Fidelity in Prototyping . 58

7

10.8.1.1 Low-fidelity “Informal” design tools 58

10.8.1.1.1 Advantages . 58

10.8.1.1.2 Disadvantages . 59

10.8.1.2 High-fidelity visual mockups . 59

10.8.1.2.1 Disadvantages . 59

10.8.1.3 High-fidelity, fully-interactive prototypes 59

10.9 Video Prototyping . 59

11 Tuesday, February 21st: Visual Design 60

11.1 Graphic Design . 60

11.1.1 Communication . 60

11.1.2 Interpretation . 60

11.1.3 History . 60

11.1.4 Minimalism . 60

11.1.5 Bauhaus Thinking . 60

11.1.5.1 Single axis of view . 60

11.1.5.2 Grid-based Design . 60

11.2 Visual Design . 61

11.2.1 Corporate Identity . 61

11.2.1.1 Logos . 61

11.3 Product Design . 61

11.4 Streamlining . 61

11.5 Form Follows Function . 61

11.6 Simplicity and Elegance . 61

11.7 Simplicity . 62

11.8 Elegance . 62

8

11.8.1 Reduction . 62

11.8.2 Regularization . 62

11.8.3 Leverage . 62

11.9 Unity . 62

11.10 Refinement . 62

11.11 Color . 63

11.11.1Color Spaces . 63

11.11.1.1 Additive vs Subtractive . 63

11.11.2Perceptual Organization . 63

11.11.3Munsell Color Space . 63

11.12 Gestalt Principles . 63

11.12.1Figure/Ground . 63

11.12.2Proximity . 63

11.12.3Similarity . 64

11.12.4Symmetry . 64

11.12.5Connectedness . 64

11.12.6Continuity . 64

11.12.7Closure . 65

11.12.8Common Fate . 65

11.12.9Transparency . 65

11.13 Fonts . 65

11.13.1Serif . 65

11.13.2Sans Serif . 66

11.13.3Monospace . 66

12 Thursday, February 23th: Midterm 1 Review 67

9

12.1 Logistics . 67

12.2 Composition . 67

12.3 Alignment . 67

12.4 Common Mistakes . 67

12.5 Summary . 67

12.6 Review . 68

13 Tuesday, February 28th: Midterm 1 69

13.1 Next Class: Thursday, March 2nd . 69

13.1.1 Work with your groupmates . 69

14 Tuesday, March 7th: Visualization Patterns 70

14.1 Information Visualization, Design Patterns . 70

15 Thursday, March 9th: Usability Inspection 71

15.1 Usability Testing . 71

15.1.1 Inspection Techniques . 71

15.1.2 Cognitive Walkthrough . 71

15.2 Example: Find a book in a library . 71

15.2.1 Heuristic Evaluation . 71

15.2.1.1 Visibility of system status . 72

15.2.1.2 Match System and World . 72

15.2.1.3 User control and freedom . 72

15.2.1.4 Consistency and standards . 72

15.2.1.5 Error prevention . 72

15.2.1.6 Recognition over Recall . 72

15.2.1.7 Flexibility and efficiency of use . 73

10

15.2.1.8 Aesthetic and Minimalist Design . 73

15.2.1.9 Help users diagnose recognise . 73

15.2.1.10 Provide help and documentation . 73

15.3 Heuristic Evaluation Steps . 73

15.4 Pros and Cons of HE vs User Testing . 74

16 Thursday, March 16th: Empirical Evaluation 75

16.1 GPT4: AI-based Rapid Prototyping . 75

16.1.1 Qualitative Empirical Evaluation . 75

16.1.1.1 Trends from Qualitative data . 75

16.1.2 Quantitative Empirical Evaluation . 75

16.1.2.1 Approaches . 75

16.1.2.2 Examples of measures . 76

16.1.3 Qualitative vs Quantitative . 76

16.2 Designing Controlled Experiments . 76

16.3 Managing Study Participants . 76

16.3.1 The Three Belmont Principles . 76

16.4 Ethics . 77

16.5 Privacy and Confidentiality . 77

17 Tuesday, March 21st: Data Analysis 78

17.1 Managing Study Participants . 78

17.2 Treating Subjects with Respect . 78

17.3 Data Analysis . 78

17.3.1 Bubble Cursor Attributes . 78

17.3.1.1 Hypotheses . 78

17.3.1.2 Independent Variable . 78

11

17.3.1.3 Dependent Variable . 79

17.3.1.4 Control Variables . 79

17.3.1.5 Random Variable . 79

17.3.1.6 Control Variables . 79

17.3.2 Counting Analysis . 79

17.3.2.1 Continuous Data . 79

17.3.2.2 Categorical Data . 80

17.3.3 Cleaning Data . 80

17.3.4 Skewed Distributions . 80

17.3.4.1 Negative skew . 80

17.3.4.2 Positive skew . 80

17.3.5 Power Law Distributions . 80

17.3.6 Confidence Intervals . 80

17.3.7 Hypothesis Testing . 81

17.3.7.1 p-values . 81

17.4 Statistical tests . 81

17.4.1 Between-subject study: Unpaired vs Paired 82

17.4.2 t-Test . 82

17.4.2.1 Assumptions . 82

17.4.3 Mann-Whitney’s U Test . 82

17.4.4 Parametric vs non-parametric . 82

17.4.4.1 When to use non-parametric tests 83

17.4.5 ANOVA . 83

17.4.6 Objective measurements . 83

18 Thursday, March 23rd: Native vs Web Apps 84

12

18.1 Implementing Interfaces, Part 1 . 84

18.1.1 Xerox Alto (1973) . 84

18.2 Native Apps: GUI Toolkits . 84

18.3 Native Apps . 84

18.3.1 Android SDK Example . 85

18.4 Web Apps . 85

18.5 Disentangling . 85

18.6 DOM (Document Object Model) . 86

18.7 Web App with server-side code . 86

18.8 Client-side Web Frameworks . 86

19 Tuesday, April 4th: Native Events – Widgets, Events, Model-View-Controller 87

19.1 Unexpected Circumstances . 87

19.2 Administrative Matters . 87

19.2.1 Midterm 1 Regrades . 87

19.2.2 Midterm 2 Logistics . 88

19.2.3 Scope: . 88

19.2.3.1 Readings Scope . 88

19.2.3.2 Course curving scheme . 88

19.2.4 Next Team Project Assignment . 89

19.3 Native App Concepts . 89

20 Thursday, April 6th: Browser 91

20.1 Midterm Logistics Review . 91

20.2 Implementation . 91

20.3 Where are we in the course? . 91

20.4 Parsers . 95

13

21 Thursday, April 13th: Collaboration and Social Computing 100

21.1 Post Midterm 2 Feedback Form . 100

21.2 Remote Communication . 100

21.2.1 Zoom . 100

21.2.2 Collaboration Apps . 100

21.2.3 Calendars . 100

21.3 Challenges to social software . 100

21.3.1 Success crisis . 100

21.4 Single Display Groupware . 101

21.4.1 Roomware . 101

21.5 Graph Theory . 101

21.6 Power Law Distributions . 101

21.7 Time/Space Matrix . 102

21.7.1 There goes the neighborhood: . 102

22 Tuesday, April 18th: Accessibility 103

22.1 Accessibility Goals . 103

22.2 Disabilities . 103

22.2.1 Types of Disabilities . 104

22.3 Solve for One, Extend to Many . 105

22.3.1 Closed Captioning Usages . 105

22.4 Specialized Hardware . 105

22.5 Visual: Screen Readers . 105

22.5.1 Do not cause Seizures! . 105

22.6 Navigable . 105

23 Thursday, April 20th: Future Interfaces – VR/AR 106

14

23.1 Virtual and Augmented Reality . 106

23.1.1 Changes to costs of VR Hardware . 106

23.2 Augmented Reality . 106

23.2.1 Video see-through AR . 106

23.2.2 HMD-based AR . 107

23.2.3 Hardware Complexities . 107

23.3 Enabling Technologies/ Open Research . 107

23.4 Getting Input . 107

23.4.1 3D Glasses . 107

23.4.2 Active Shutter . 108

23.5 Head-Worn Displays . 108

23.6 Audio Displays . 108

23.6.1 Auditory Cues . 108

23.7 Reverberation . 108

23.8 Haptic Displays . 108

23.9 Gustation and Olfaction Displays . 109

23.10Professor Hartmann’s PhD students’ work: Pointing & Selection in 3D 109

23.11Bi-manual Scaling . 109

24 Tuesday, April 25th: Career Panel 110

24.1 Speaker List . 110

24.2 Midterm #2 Graded . 110

24.2.1 Regrades . 110

24.2.2 Course Standing . 111

24.3 End of the Semester . 111

24.4 Design Showcase . 111

15

24.5 Poster Details . 111

24.6 Final Demo Details . 111

24.7 Q&A . 111

25 Thursday, April 27th: Last Class 113

25.1 Final Lecture... but wait there’s more . 113

25.2 Final Deliverables . 113

25.3 Takeaways . 113

25.3.1 Why UI is Important . 113

25.4 Future Coursework for Undergraduates . 114

25.4.1 Graduate School . 114

25.4.2 What if I am a Graduate student? . 114

25.5 Interested in HCI Research? . 115

25.6 Q&A . 115

25.7 Course Evaluations . 115

16

Acknowledgements I would like to recognize and thank Professor Björn Hartmann for all infor-
mation contained in these notes.

Thanks to Minh Phan, Rae Xin, and any others who helped me typeset this.

Disclaimer: These notes are high-level and mainly capture verbal notes not on the slides – there’s
much more detail on the slides. As such, this represents only a subset of what the class covers.

17

1 Tuesday, January 17th: Welcome to User Interface Design and
Development

1.1 The dangers of poor UI/UX

It is a nice sunny day, you are relaxing on your vacation in Hawaii. Suddenly, you get an alert on
your phone that a missile attack is incoming: and mass panic ensues.

But then it is clarified that there was actually no threat and the message was sent in mistake.

How did this happen?

To answer that question, let us look at the UI: We have a dropdown menu with ambiguous acronyms
and a confirmation that follows. However the confirmation that follows highlights the “Yes” option
as if it is the default.

1.2 Where did we start

1.2.1 The Commandline

In the Command-line, we had a terminal. Now we have a desktop with icons! Modern UI is
organized like a physical office: there’s a file cabinet with files and a wastebasket.

! But we should not take the metaphor too far:

Making a 3D VR-ish desktop office on your computer has benefits and downfalls. One major
downfall is: you are trying to represent 3D via a 2D screen.

1.3 Course Staff and Communication

Here is the CS 160 course staff for this semester!

Bjoern Hartmann: Instructor

Shm Almeda: TA

Peitong Duan: TA

Ace Chen: Reader

Hridhay Suresh: Reader

18

1.4 Enrollment

This class is oversubscribed with ∼100 seats total, split between CS 160 (undergrad) and CS 260A
(graduate).

We usually see 5-10% turnover, so if you’re in the first 10 positions then you should keep up with
the class. Otherwise the chance that you can take the class this semester is unlikely.

Luckily, you can take this class in the summer semester!

Alternatively:

• DES INV 15: Design Methoology
• DES INV 25: UX Design (non-technical)
• IEOR 170: Human Factors
• INFO 213: UI Design and Development
• INFO 114/214: UX Research

are classes you can look into.

! This class has a heavy workload. If you are an EE/CS Major, you already know what upper-
division CS classes are like. If you do not think you can handle it, you should drop ASAP to
give others a fair chance to get in.

If you are beyond spot 10 on the waitlist, consider leaving now. Likewise if you do not have a
seat/cannot see the screen.

1.5 This Course

is about reliably building very good interactive systems.

We focus on interactions with and through intelligent systems.

The goal of this class is to build a working interactive prototype. We do not focus on scaling
the class to millions of people, for that CS 169 will moreson help you with that – CS 160 is more
for the front-end.

We place emphasis on de-risking via user testing and working on rapidly prototyping.

1.6 Human-Computer Interaction (HCI)

Design, prototyping & evaluation of UIs.

Human

• End-user of program

19

• Others (friends, collaborators, coworkers)

Computer

• The machine the program runs on
• Can be (and often is) split: clients & servers

Interaction

• User tells the computer what they want
• Computer communicates results

1.7 User Interfaces (UI)

What allows people to interact with computers & the computer to communicate results.

Note that this can include hardware design (i.e. buttons).

1.7.1 Why Study User Interfaces?

• In today’s applications, an average of 48% of the code is devoted to the user interface portion
– It’s a major part of work for “real” programs (approx 50%).

• You work on real software intended for others
• Bad UI costs money, lives (see Airplane crash into a canyon due to badly designed UI in
autocomplete software that the pilot used), votes, etc

• UI is hard to get right – people are unpredictable.

1.8 Interface Design Cycle

If you take away anything from this lecture, remember this:

20

1.9 Contextual Inquiry

Observe existing practices.

Create scenarios of actual use.

Create models to gain insight into work processes.

1.10 Rapid Prototyping

Low fidelity can be better as it is:

• Fast, no attachment if you have to scrap it (if you were invested in it then you will stick with
a bad UI due to the sunk-cost fallacy).

• No need to debug

1.11 Evaluation

Test with real target users.

Ask other CS 160 UI experts to check a UI for potential accessibility problems using the heuristics
and conditions they learned to look for.

1.12 Goals of the Course

Learn to design, prototype, evaluate interfaces:

• Discover tasks of prospective users
• Cognitive/perceptual constraints that effect design
• Techniques for evaluating an interface design
• Importance of iterative design for usability
• Technology used to prototype & implement UI code
• Unique aspects of intelligent user interfaces
• How to work together on a team project
• Communicate your results to a group

These will likely be very important for future jobs.

In other CS classes, you learn algorithms. Here we expect you to know algorithms and teach design.

21

1.13 Teams

Instructors will form groups of 4-5 students (who are in the same section) in week 2
or 3.

1.14 Course Mechanics

You must be comfortable with programming at the level of CS61B.

Note: Individual programming assignments require you to write code in Javascript, HTML, CSS.

You must be able to attend class and one of the sections each week.

You must commit to working with your assigned team on your group project.

1.15 Office Hours

TBD

1.16 Sections

4 options:

1. 101 – Wed 11am-12pm, 540 Cory
2. 102 - Fri 1-2pm, 310 Soda
3. 103 – Th 10am-11am, 540 Cory
4. 104 – Wed 2 -3pm, 320 Soda

You MUST be able to attend one of the sections.

Section starts next week

1st half of the semester: Lecture material + Tech stack 2nd half of the semester: Design critiques

1.17 Readings

Readings will be posted on bCourses.

Reading responses (recurring assignment) You must post a substantial answer for each assigned
reading, by 10am before class (so we can review them before class).

Responses are the major factor in your class participation grade.

22

Your first reading response is due next Tuesday by 10am.

1.18 Grading

1. Participation – 10% (Reading responses, class, Ed Discussions)
2. Individual Assignments 20%
3. Two Midterms 30%
4. Group Project Assignments 40%

Note that we generally do the midterms in-class and this may not be accurate – check bCourses.

1.18.1 Late Assignments

• Most assignments will be due before class on the due date
• Individual assignments lose 20% per day (weekend counts as one day)
• Group assignments will not be accepted late

23

2 Thursday, January 19th: The Design Cycle

2.1 UI Critique: Font Selection

As a designer, one can always benefit from considering multiple interfaces and their respective
benefits/tradeoffs.

When choosing what font you want text to be displayed in on Power point, you ahve 2 options:

1. Have a flattened complete list of all combinations of font name, font family, and font weight,
rendered in the system font.

2. Have a dropdown that appears on hover with the family and weight, rendered in the font
right there for you to see.

• This gives a visual inconsistency
• Most will not be used, so slows down the application, with minimal usage for non-graphic
designers

• Does not show what numbers/symbols/etc other visual icons look like

This is not a world-ending decision but there are still tradeoffs. Arguably, neither got it right,
which to use depends on the usecase and intended users.

2.2 BCourses Logistics

Make sure you are keeping up with the assignments listed there :D

2.3 Where does design fit into the larger process?

First, realize that there is both stuff before and after Design.

Before: R&D – they create the raw material, look into what matches user needs

After: Engineering (sometimes integrated with design, but sometimes separated), Sales – marketing,
feedback loop for re-design

2.3.1 Oscillations over Project Lifespan

The Design Cycle has a dual form which cycles over the number of ideas under consideration;
however, this originally large number decays in magnitude to 1, as the project timeline progresses.

2.3.2 Divergent vs Convergent Phases

Divergent: Start with a lot of different ideas/prototypes

24

Convergent: Over time, you get more narrow and concrete on the concept of what you want to
make.

2.3.3 Waterfall Model (Software Engineering)

A linear “waterfall” model where you can only go forward (and therefore don’t allow anything to
go backwards) does not work.

This model was used by the Federal Government (specifically wrt contractors) which is probably a
key reason behind why their software sucks.

! This may not seem like that big of a deal, but as you get closer to shipping the project, these
mistakes cost exponentially more to fix.

Iterative design de-risks your design cycle.

2.3.4 Agile Software Development

In Silicon Valley, you’re more malleable to change. This differs from the similarly essenced iterative
design in that this is more technical – this is about writing code.

2.4 Shopping Cart Video (from abc)

In Palo Alto, CA, IDEO is a Design committee looked into making a new, better, shopping cart.
https://www.youtube.com/watch?v=M66ZU2PCIcM

Student thoughts on how well they followed the design cycle in the video:

• For the final evaluation video, it seemed kinda rushed.
• Evaluation happened earlier with post-it notes and multiple prototypes

Here Evaluation happened internal to the team (as opposed to user-tested).

They established themes through montages.

2.5 Methods

2.5.1 Talking to people

Talking to people is important, whether it be from asking stakeholders or interviewing experts.

25

https://www.youtube.com/watch?v=M66ZU2PCIcM

2.5.2 Stakeholder Map

Being visual is important for designers, realize who is at risk as a consequence of your decision(s).

2.6 Brainstorming

1. Sharpen the Focus
2. Playful Rules
3. Number your Ideas
4. Build and Jump
5. The Space Remembers
6. Stretch Your Mental Muscles
7. Get Physical

Aim for quantity, but hope for quality.

26

3 Tuesday, January 24th: Sketching

3.1 Logistics: Discussion Signup

You can view your discussion assignment here: https://tinyurl.com/cs160disc-sp23

3.2 Sketching, Brainstorming, Critique

3.2.1 Case Study: Tesla Design

Tesla Cards do stuff differently:

• They have a large screen in the middle (in portrait mode – vertically long)
• No longer physical buttons – all touch screen

3.3 Visions for the future of Car Designs

3.3.1 Apple Touchscreen Car Integration (from WWDC)

All pixels all the time.

Benefits:

• Shows more information
• Software will get updated
• You don’t need to read a complex manual to use the car’s basic features
• Cheaper than manufacturing buttons

3.3.2 INEOS Grenadier

All physical buttons.

Benefits:

• More granularity in changing a knob by only a few degrees
• Does not require you to look at it to adjust
• Better in Mountain-like areas without WiFi
• Can be used with gloves/wet hands whereas a touchscreen cannot

27

https://tinyurl.com/cs160disc-sp23

3.4 Sketching

3.4.1 Design Journals

Can be a mixture of many different drawings/UI representations/etc.

See attached Drawing Pad for reference.

3.4.2 Storyboard

Disney uses this a lot:

• Combines image frames with text to give a story without committing to all details
• Saves developer time
• Communicates a lot of information/content without being “good” drawings

3.5 Brainstorming

A particular technique for generating a lot of ideas (this is the divergent phase, not the convergent
phase).

1. Sharpen the Focus
• Make sure you have the right focus – not too narrow or fuzzy.
• Widening your focus can allow you to consider innovative

2. Playful Rules
• Don’t prematurely reject ideas because they sound too immature or playful

3. Number your Ideas
• This makes sure that no one person is attached to an idea

4. Build and Jump
• Exploration vs Exploitation

5. The Space Remembers
• Use a lot of space
• Giant Post-It Notes
• External Spatial Memory for your team (i.e. “War Rooms”)

6. Stretch Your Mental Muscles
• Do puzzles
• Get immersed in the domain (go somewhere irl)

7. Get Physical
• Sketch
• Make Models
• Act out

3.6 Critique

28

! This is NOT for you to show off how great your project is – you do not learn anything if you
are just told that you did a great job.

It is also important not to insult (give feedback on the design, not the designer dispassionately),
ask for specific alternates (instead of suggesting).

This differs from ‘Brainstorming’ as ‘Critique’ is more of an evaluation exercise, and less of a
divergent mechanism.

29

4 Thursday, January 26th: Task Analysis

4.1 Administrative Details

Midterm Schedule set:

1. Tue Feb 28
2. Tue April 11

No Final Exam

But Final Presentations will be on Wed or Thu during RRR week – part of Jacobs Institute Design
Showcase! (Schedule TBD)

4.2 ChatGPT vs Google

Similarity & Differences between Web Search (Google) and chat-dialogue interaction (ChatGPT):

• Search engines give multiple results which you can synthesize an answer from, whereas Chat-
GPT just gives an answer

• Google is helpful if you are in an explanatory phase
• Google gives more sources to cite from
• A singular answer from ChatGPT can be biased, whereas multiple sources from Google can
allow us to diversify

• ChatGPT can be more detailed/step-by-step
• ChatGPT can answer questions that it hasn’t seen before in its corpus
• ChatGPT has memory, whereas search engines don’t explicitly use previously queries
• Google has Images and other integrations, whereas ChatGPT is text-in text-out
• ChatGPT can be confidently incorrect

‘Go beyond intuition, observe target users in context to inform your design’

4.3 XEROX PARC

The first “desktop” computer came from here (IBM and Macintosh were influenced by it), though
they were just a printer/copier company.

4.3.1 XEROX 8200

This was sold as a “just click the button and you will be good to go” but in reality, users found
that it was too complicated.

30

Ever very smart people (ACM, Turing Award Winners, Chief Scientists at Powerset/Bing) were
unable to operate the machine.

4.3.2 Observation Techniques

User Research:

• Task Analysis
• Contextual Inquiry
• etc (Ethnography/Cultural Probes/Diary Studies)

Goal: Understand User’s Activities in Context

4.4 Task Analysis

4.4.1 Case Study: BART Ticket Machine

• Lots of stickers, text, and numbers which overwhelms the user
• People read left-to-right so having earlier tasks more on the left in a noticeable position would
be helpful

Solution:

• Stratify into groups (i.e. tourists vs commuters)
• Age varies =⇒ you cannot make the stand height too high or too low
• Make sure it is accessible to people in wheelchairs

! But this is wrong!

We should actually be talking to real users (found in BART stations) and ask them directly. You
are a student so they will be more likely to talk to you than someone who is trying to sell you
something; however, you should still make sure to properly compensate them for their time even if
it is only a $5 Starbucks Giftcard.

4.4.2 Task Analysis Questions

1. Who is using the system?
2. What tasks do they now perform?
3. What tasks are desired?
4. How are the tasks learned?
5. Where are the tasks performed?
6. What’s the relationship between user & data?
7. What other tools does the user have?
8. How do users communicate with each other?
9. How often are the tasks performed?

31

10. What are the time constraints on the tasks?
11. What happens when things go wrong?
12. etc

4.5 Old and New Tasks

Now we have clipper cards, Paying with a phone, etc.

4.6 Learning Tasks

1. What do they need to know?
2. Do they need training?
3. Experience, level of education and literacy

4.7 Where is the task

Are their effects of other people (i.e. privacy concerns)

4.7.1 Geography of the BART Station

• Loud
• Privacy
• Lighting is Dim
• Musicians and Rituals

4.8 Other Tools

Smartphones/laptops/Maps are artifacts whose integrations can be relevant for how users commu-
nicate.

4.9 When things go wrong

Make sure you have backup strategies

4.9.1 Japanese QR Code Vending Machine

This is a disaster as it required you to type out what product you want on clicking numbers multiple
time + recieve an email 2FA (requires good internet):

32

! If your machine takes too long to work, then people will not use it. Sometimes people simply
cannot use it.

Solution: Make sure tasks are specific.

33

5 Tuesday, January 31st: In-Class Team Brainstorm

5.1 Logistics: Assignments due!

• Team Brainstorm
– Aim for 5̃0 visual ideas!

• Outside of class:
– Select initial course idea
– Target specific users (not students)
– Be creative – you app should not be found in the app store!

• Team Collaborative Plan
– Meet as a team
– Figure out team’s strength/weaknesses
– Figure out how/when you’ll meet

• Individual Programming Assignment 1: Electric Time
– Simple web app
– Deploy, test, debug app locally
– Document & showcase design + interactive features
– will be a Personal Transportation Conversion app
– Section (More HTML + JS) will help with starting this!

• Thursday’s Lecture: Conceptual Models + associated Reading Response

5.2 Team Project

Be ambitious, yet realistic.

5.2.1 Intelligent User Interfaces

Example: Audio Fingerprinting a la Shazam.

• Text-to-speech and Speech-to-text
• Translation
• Optical Character Recognition
• Image labeling, face, logo and landmark detection
• Image generation
• Classification and prediction using your own data
• Dialog systems (chatbots)

Example: Automatic Data Entry

Example: Automatic Text Translation

34

5.2.2 Designing Inclusive Technologies

Abilities change over the course of our lives

Also recall that impairments can be:

• Permanent (i.e. losing an arm)
• Temporary (i.e. arm injury)
• Situational (i.e. new parent with baby in one arm)

5.3 In-Class Team Brainstorm: Meeting time!

For the rest of the class please think of at least 50 app ideas that serve an underrepresented
community.

The first group to finish will win free cookies!

The winners were Group 8 consisting of Henry La, Karissa Wong, Priscila Figueroa, Rae Xin, and
Rahul Shah.

35

6 Thursday, February 2nd: Contextual Inquiry, Conceptual Mod-
els 1

6.1 Case Study: Apple Watch

You can have a modular home screen or one like traditional watches.

6.1.1 Case Study: Calculators

The 1990 HP-48SX calculator had an android emulator which mimicked it completely with over-
loaded buttons for easy familiarity at the cost of small hard to push buttons due to the touchscreen.

6.2 Reminder: Assignments

Tue Feb 7:

• Reading Response

Thu Feb 9:

• Team Collaborative Plan
• Team Brainstorm

Mon Feb 13:

• Programming Assignment 1 – Electric Time

6.3 Contextual Inquiry

6.3.1 Goals

• Go to where the customer works
• See what they do
• Talk to them about what they do

This gets you out of your perspective and see their tasks the way they do – a mix between observing
and interviewing.

6.3.2 Context

You want details not abstractions – you want to be able to see their work live, in action.

When people are removed from their work environment they can only tell not show.

36

6.3.2.1 Why not just interview folks?
Folks may be used to inefficiencies and just accept things as “that’s just how things are done”

6.3.3 Affordances

The term affordance refers to the relationship between properties of a physical object and capabil-
ities of a person, that determine how the object could be used.

6.3.4 Signifiers

Signifiers help people figure out the affordances of objects without labels or instructions

6.3.4.1 Case Study: Doors
Q: How to make clear whether you push vs pull to open the door?

A: Make it so that there is only one clear way to do the intended action (i.e. no door handle implies
push whereas

6.3.5 Universal Signals

Red means stop;
Green means go.

6.3.6 Incorrect signifiers

! Be careful: Signifiers may suggest affordances that do not exist.

37

7 Tuesday, February 7th: Conceptual Models (continued)

We start at the Design Model and then go to the System Image which then iterates back and
forth between itself and the User’s Model.

It is important to realize that the User’s Model is different than the System Image – the User
cannot see your source code!

7.1 Make Controls Visible

Hidden side buttons or controls in hard-to-reach places will make it so that users don’t know or
won’t use features.

7.1.1 Don’t overload the User

“Too Much Visibility?” is a thing and will make it had for the user to find the 1 button they want
to press amongst the 200 available choices. Note that we will later formalize this with a function
that measures visual search cost (More buttons =⇒ longer processing time to find a button).

7.1.2 Make Controls Clear

A lot of seat controls have clear mappings from what you want to have happen to the action needed
to make that a reality.

7.1.3 Case Study: Stovetop Controls

Which knob controls which burner on a stove is a classic UI question.

Contrary to common opinion, you do not actually need labels to make this unambiguously clear.
All you need is to arrange the stoves in a non-linear manner and have the knobs be perturbed in
the same manner:

38

Figure 1: This is unambiguously clear since the knobs are not packed in a horizontal line

7.1.4 Use Transfer Learning

Knowledge from other domains can help users understand how new technologies can work. Laptops
have keyboards in a layout that mimics those of typewriters to help people transition to newer
technology.

7.1.5 Provide Feedback

Q: Have you ever pressed a button more than once? If so, why?

The answer is likely that you did not recieve timely feedback that your input was registered (perhaps
you did not press hard enough?).

Making sure you have low-latency is key for good UX.

39

7.2 Action Cycle

Figure 2: This is a diagram of the Action Cycle

7.2.1 Gulf of Evaluation

Let us say that you are a Data Scientist who is trying to figure out some correlations.

If I can you some pairs of (x, y) in an unsorted order this would be a very non-trivial task. Your
first thought may be to re-order the data.

However what if I give you the data as a scatterplot. Then it may be a bit easier to immediately
answer as we can use our perceptual systems.

7.2.2 Gulf of Execution

What if I ask you to draw some complicated shapes with a turtle drawing program?

This is non-trivial as you need to calculate some trigonometry. However if I gave you some ‘draw
some shape’ command then it would be much easier to execute this task. Note that the Execution
is abstracted – when coding we generally don’t think about what is being put into each register in
the generated Assembly code.

Gulf of Evaluation goes from Mental Model to the Real World.

40

7.3 Interface Languages

An interface language is the set of actions a user can take in an interface. These actions have
abstract meaning and a concrete physical form. You can define its input language (provided by
user to app) and its output language (provided by app to user)

7.3.1 Semantic & Articulatory Distance

Semantic distance reflects the relationship between the user’s intentions and the meaning of
expressions in the interface languages.

Articulatory distance reflects the relationship between the physical form of an expression in the
interaction language and its meaning.

7.3.2 Case Study: Adding Autocomplete

Q: If you added autocomplete to your app, would you be adding Semantic or Articulatory Distance?
Would this narrow the gulf of execution or evaluation?

A: This is a trick question – it can be both the gulf of execution (you need to type less keystrokes –
lower articulatory distance as you need to do less physical actions) or narrow the gulf of evaluation
(as you get to see similar searches – if you don’t know how to spell something, your intentions can
still be understood and met).

7.3.3 Spell and Grammar Suggestions

Gulf of evaluation (looking at what the UI shows you and interpreting “did this meet my goal
or not”) and semantic distances are both lowered since our intention gets matched up to the real
world.

7.4 Direct Manipulation

An interface that behaves as though the interaction was with a real-world object rather than with
an abstract system

Central ideas

1. Visibility of the objects of interest
• If you open a phone, your apps are instantly viewable

2. Rapid, reversible, incremental actions
• You can undo actions

3. Manipulation by pointing and moving

41

• You can scroll between apps with ease
4. Immediate and continuous display of results

• There are no hidden states, or compiling, WYSIWYG (what you see is what you get)

GUIs were formed by HCI experts so that people in this room (i.e. non-CS majors) can work with
technology.

! Note that if you have used something like LATEX then that is an example of something that is
not direct manipulation.

Voice control (like Siri) narrows the Gulf of Execution.

7.5 Metaphor

Metaphor – The transference of the relation between one set of objects to another set for the
purpose of brief explanation

This can be useful to help clue users in what the functionality of an interface is and how it might
be used.

Not all signifiers are metaphors – metaphors are a type of signifier – all metaphors lend themselves
to affordances.

7.6 Modes

This can be useful in applications like Photoshop or Illustrator.

However this can be bad for the User as they need to remember what mode they are in. The SFO
airplane crash we talked about in lecture 1 was due to the Pilot thinking they were on autopilot
when they were not.

7.6.1 Fixing the Problems with Modes

• Simply do not use modes
• Make it very explicitly clear which mode you are in

The easiest way to go about the second option is to make a redundant UI for the additional modes.

7.6.2 Quasimodes

You have to consciously and continuously take some action to stay in the mode.

42

The best example of this is the Shift key, where if you let go then you exit the mode. This makes
sense as you more often than not want to type in lowercase.

This is different from the Caps Lock key which completely switches your mode (which can lead
to the accident where you write a bunch of text in all caps, essentially unintentionally ‘yelling’ at
someone).

43

8 Thursday, February 9th: Human Information Processing

8.1 Galileo AI

“Galileo AI creates delightful, editable UI designs from a simple text description. It empowers you
to design faster than ever.”

8.2 Review: Modes

Last time we went over the Caps Lock key and how it was an example of a mode.

We also talked about quasimodes – the discomfort of having to hold the Shift button down reminds
you that you are still in the uppercase editing mode.

! If you forget which mode you are in, you will have the source of numerous errors.

8.2.1 Keyboard Modes: QWERTY, QWERTZ, AZERTY

When typing in English vs German, the same buttons can map to letters and muscle memory can
work against the User.

8.2.2 Air France Flight 447

In 2009, the plane switched modes due to a broken sensor, without alerting the Pilots. Then when
the pilots tried to change the direction, they went into Gimbal Lock, from which they could not
recover.

8.3 Modeling Human Performance

8.3.1 Motivation

This is useful to:

• react to situations which we did not see – broader applicability.
• A general solution by falling back on stuff we have seen before.
• Finally, we don’t have to have observe things difficulty but we can extrapolate to unseen
criteria

So you can react to designs without actually building them.

44

! Note that even today we still don’t have a perfectly comprehensive model – we must still
fallback upon the design cycle.

8.3.2 Model Information Processor Theory

This makes the assumption that humans take in data from a bunch of sensors (embedded systems)
that go through a perceptual processor and the brain is just a distributed system consisting of
multiple computers.

Note that this is probably inaccurate but it predicts performance well.

8.3.2.1 Perceptual Processor
We take in features that are visual, audio, haptic, etc.

Our attention is selective and is very fast in dropping details. This is done via pre-attentive features
(stuff that pop out at you) such as color (most prominently), shapes, curvature, size, convexity,
and many more.

! Note that these cannot be combined – pre-attentive features only work in isolation – conjunc-
tions do not work.

Note that the perceptual processor has a cycle time for quantum experience of 100ms.

This is similar to what we see in CS61C w.r.t. how much can be processed, stuff faster cannot be
processed.

8.3.2.1.1 Michotte Demonstration
Causality falls off a cliff between 80 and 100 ms and after that, events are seen as indpendent.

8.3.2.2 Memory
Humans usually repack information as letters or numbers (abstract embeddings with meaning
assigned to them) instead of series of pixels with brightness values.

8.3.2.2.1 Attention Span
Humans can usually only remember at most 7± 2 things at once.

Attention Span: Interruptions ¿ decay time.

45

The more things you are remembering, the longer the access time it will take to remember it will
be.

This is analogous to how a CPU only has a limited number of registers for short-term memory.

8.3.2.2.2 Long-Term Memory
In contrast to Short-Term attention span (STM), we also have a longer to access yet bigger Long-
Term Memory (LTM).

There is no known limit for the capacity of Human’s Long Term Memory.

But it is hard to make sure the semantic encoding goes to LTM and not STM. Remembering/re-
trieving information is also an issue of concern.

8.3.2.3 Cognitive Processor
Humans are fundamentally not a multi-core machine – you can only focus on one thing at a time
– you work in serial (multi-tasking is really just low-latency multiplexing).

8.3.2.3.1 Flight Eastern 401
In 1972, the aircraft crashed due to the crew focusing on a ‘landing gear’ indicator which overrode
the ‘crash imminent’ indicator to their senses, and made them miss the fact a crash ws imminent

8.3.2.3.2 Stroop Effect
The meaning and visual infromation streams conflict and thus confuse your cognitive processor
leading to higher latency.

8.3.2.3.3 Input Stratification
You can calculate the net latency via adding each cognitive cycle for each processor (visual – for
reading, processing – for classifying, motor – for pushing a button, etc).

! However this does not work since this is not accurate for complex tasks.

Different tasks have different difficulties. Use pre-attentive features or slow-motion to prolong
videos if you want the User to see causality in something that occurs very fast.

8.3.3 Stage Theory

8.3.3.1 Recognition over Recall
Design for recognition over recall (info reproduced from memory).

46

You have probably heard of Snow White & the Seven Dwarfs but if you are asked to recall the
names of the 7 Dwarfs it will probably be non-trivial to do so.

However if I give you a word bank and ask you to choose which are the names, then the task
becomes much easier.

8.4 Decision Making and Learning

8.4.1 Hick’s Law: Decision Paralysis

The time cost of taking a decision, T , depends on the number of options n:

T = a+ b log2(n+ 1) (1)

where a, b are empirically derived constants. a = min time it takes to do the task (y-intercept),
and b = what human muscle group is being used and how quick that works.

This is why supermarkets make it hard to find products, as well as why they display so many
products – to overload your brain into thinking you need more than what you came for.

8.4.2 Power Law of Practice

Task time on the nth trial follows a power law:

Tn = T1n
−a + c (2)

Main Idea: You get faster the more times you do something.

This means that it will take longer for visitors who are unfamiliar versus experts with the given
technology. This also makes it hard to switch to new, unfamiliar, technologies as your muscle
memory has already been built.

8.5 Pointing

8.5.1 Fitts’ Law: Distance and Target Size

This is a foundational Model for any UI designer to know about.

T = a+ b log2(D/S + 1) (3)

where D = distance, and S = size (and [a, b] = [start/stop time, speed] are empirically derived
constants).

47

8.5.1.1 Index of Difficulty
We can also formulate the Index of Difficulty:

ID = log2(D/S + 1) (4)

This tells us that T ↑ as D ↑
and that T ↓ as S ↑.

If we have a bigger button then it should be easier and faster to click on. This is a due to S ↑.

8.5.1.2 Fitts’ Law Tasks
On a touchscreen, tapping and dragging are fundamental Fitts’ Law Tasks.

On your laptop, Fitts’ Law Tasks are moving your mouse pointer and clicking.

8.5.2 The Power of Right-clicking: having options come to you

Instead of having to drag your cursor across the screen, it is more optimal if you can have the list
of options come to you. When you right click, a bar of options appears, this exploits Fitt’s Law by
making D → 0.

8.6 Bandwidth of Human Muscle Groups

48

VR headsets are non-optimal as using fingers instead of neck to click on menus/swipe/move is a
10x speedup.

49

9 Tuesday, February 14th: Input

9.1 Interface Critique

9.1.1 Dual-Screen Devices

Why should we have these?

• More screen space

Why haven’t we seen more of these?

• Moving parts =⇒ Mechanical Complexity =⇒ Fall apart quicker
• More expensive =⇒ lower return on investment
• Aesthetics: there will likely be a crease in the middle
• Not much marginal benefit for the additional pixels

9.1.1.1 Microsoft Research: Codex
This dual screen tablet computer worked well with embedded sensors to detect when the 2 phones
were detached.

9.1.1.2 Microsoft Research: Courier
Courier was a prototype concept by Microsoft for a dual-touchscreen tablet. The device was
conceived as being a digital notebook, consisting of two 7-inch touchscreens hinged together like
a book, and running a custom operating system built primarily around handwriting input and a
notebook-like journal for storing notes, images, and clippings from web pages.

9.2 Administravia: Midterm 1

You can take the exam any time in-between 9am Tuesday Feb. 28th to 8:59am Wed, online. You
have 90min to complete the exam once it has started (unless you have accommodations).

This will be done via bcourses as a quiz with a mix of MCQ (where you can choose multiple options
– select all that apply) and short answer + open-ended questions (can range from a sentence to a
paragraph or two).
This gives you an opportunity to show your understanding in a variety of ways.

9.2.1 Scope

Lectures 1 to 11 and associated readings.

Make sure to know basic HTML/JS/CSS concepts + terminology from assignments and sections.

50

9.3 Input Devices

9.3.1 Text Entry: Keystroke Devices

We have 2 criteria:

1. Fast
2. Low error rate (accurate)

There are good since we can (generally) expect where keys will be on the keyboard,

9.3.1.1 DVORAK vs QWERTY
QWERTY was made to prevent typewriter jams, and was transferred to computers for transfer
learning benefits.

DVORAK is not popular as people are used to QWERTY and learning new tech is hard (per the
Power law of practice).

9.3.1.2 Mobile Difficulty
If buttons are too small, you run into the “fat-finger problem”

Solutions:

Multi-tap mappings: Press a key multiple times to get a letter

Candybar Phones implemented this (T9 had recognition for 43556 → ‘hello’):

51

9.3.1.3 Soft Keys
Keys ‘f’ and ‘j’ have bumps on a computer keyboard but this tactile feedback information is lost
on a touchscreen, which means you have to look at the screen to type.

9.3.1.4 Drawing/Handwriting Recognition
Why don’t we use Drawing/Handwriting Recognition to input text?

Answer: it’s slower than pressing keys

9.3.1.5 Graffiti
Custom alphabet with simplified symbols that are easier to recognize – does not differentiate
between lowercase and uppercase though.

9.3.1.6 EdgeWrite
Similar to Graffiti but Corner-based text input technique:

52

9.3.1.7 Stroke writing
You can also use backend algorithms to make this more accurate

9.3.1.8 Speech Dictation
This is ∼100 wpm. So why don’t we always use this?

• Privacy – anyone nearby can hear
• Not socially acceptable – to interrupt a quiet space with talking
• Can be hard to pickup only your voice in a place with multiple people talking
• You have to know what you are going to say, ahead of time and that sort of ‘planning ahead’
is more mentally demanding

– Editing previous words or even mistakes, is painful and adds more latency than doing
the same operation on a keyboard.

9.4 Important Device Properties

9.4.1 Indirect vs Direct

Direct: Input and Output space are unified (touchscreen)
Indirect: You’re not pushing a button directly (mouse/trackpad/trackpoint)

9.4.2 C:D Ratio

For one unit of movement in physical space, how far does the cursor travel in display space?

Usually 1:1 for direct touch screen input.

53

9.4.3 Device Acquisition Time

Time between not using the device and starting to provide input

9.5 Quadrature Encoding

To use sensors for rotary encoding, you need 2 bits of information:

1. Which direction you are moving in
2. How far you are moving in that direction

9.5.1 Optical Mice

The physical mouse has hardware inside (a camera) which detects how much you have moved and
which direction – hundreds of times a second.

Fun fact: your mouse can be used as a (very bad) scanner.
It’s not good as it doesn’t have to be a repeatable proceeding device

9.5.2 Trackpoint

Lenovo Computers are known for having this red dot in the center.

9.5.3 Resistive Touchscreens

Cheap to manufacture but only allows single-touch

9.5.4 Capacitive Touchscreens

Allow multi-touch

• Direct input allows maximal screen space for mobile devices (ocular centrism).
• More degrees of freedom.
• “Virtual input devices” are adaptable.
• No extra pieces to lose or break (styli!)

9.5.4.1 Exploit the edges
Do not require users to explicitly click on some area/text. Instead allow the user to touch somewhere
within some region an allow that to be sufficient to register an input click.

54

10 Thursday, February 16th: Input (contd.) and Prototyping

10.1 In the news: Adobe Acquisition of Figma

Why did Adobe do this?

• Although Adobe could and did have competing products that accomplished the same task,
Figma had already accquired an active userbase

• To consolidate power: Adobe is the company for 2-D Graphic Design

10.2 Input Devices (contd.)

! Why don’t interfaces designed for one input method work well for another?

Example: Android touchscreen apps on a Chromebook do not support multi-touch.

10.2.1 Buxton’s 3-State Model of Input

State Description

0 Out of Range: The device is not in its physical tracking range.

1 Tracking: Device Motion moves only the cursor.

2 Dragging: Device Motion moves objects on the screen.

One can consider applying Mouse/Touch Screen/Stylus on Tablet to the above.

10.3 Prototyping Theory

There multiple definitions of Prototype:

The means by which designers organically and evolutionarily learn, discover, generate, and refine
designs. - Lim & Stolterman.

Another definition is:

55

A representation of a design, made before the final solution exist. - Moggridge, Designing Interac-
tions.

The Industrial Design Process followed this with 8 steps.

This is an example of Observation and Contextual Inquiry.

10.4 The Value of Prototyping

10.4.1 Epistemic actions

Experts rotate Tetris pieces more than novices as it is easier to visually see what the blocks look
like when rotated than to mentallly rotate blocks.

10.4.2 The Value of Surprise

The Microwave Oven discovered “by accident” when a networking engineer at Raytheon noticed
that the candy bar in his pocket would melt when he would get near to the magnetron radars that
produced microwaves.

However the key point here is that the engineer took action. They did not just wait for a surprise
to come to them, they found something surprising and made a product out of it.

56

10.5 Why Prototype?

Microsoft had at least 5 different hardware prototypes of the Microsoft mouse, as well as hundreds
of paper prototypes before a first version was officially released.

10.6 Paper Prototyping

It’s hard to sink a lot of time into paper prototypes, so you won’t get super attached to them (they
are low fidelity).

Furthermore is is cheap and fast.

10.6.1 Wizard of Oz Testing

Have people test out your prototypes without letting them know what it is, allows you to get real
feedback.

10.7 Testing Device-Based Interfaces

When conducting a test, it is preferable to have 3-4 testers.

• Greeter - Puts users at ease & gets data
• Facilitator - only team member who speaks

– Gives instructions & encourages thoughts, opinions

57

• Computer - knows application logic & controls it
– Always simulates the response, w/o explanation

• Observer(s) - Take notes & recommendations

A typical session should be approximately 1 hour as you have to:

• Preparation
• The Test
• Debriefing

! Make sure to record critical events.

Critical Events may also be moments when the user

• Got stuck
• Suddenly understood something
• Said “That’s cool”
• Said “Ohhh” etc.

10.8 Prototyping in Software

10.8.1 Fidelity in Prototyping

Fidelity refers to the level of detail.

• High fidelity: Prototypes look like the final product
• Low fidelity: Artists renditions with many details missing

Paper Prototypes are low-fidelity.

10.8.1.1 Low-fidelity “Informal” design tools
Examples:

• DENIM (UC Berkeley)
• Balsamiq Wireframes

Goal is to be as rapid and flexible as physical tools.
Add benefits of digital media: Undo, copy+paste, resizing, etc.

10.8.1.1.1 Advantages

• Takes only a few hours – no expensive equipment needed.
• Can test multiple alternatives with the saved time – faster iteration speed
• Can change the design as you test
• Especially useful for black-boxing hard to implement features such as Speech and handwriting
recognition

58

10.8.1.1.2 Disadvantages

• Can be hard to design at the proper scale / complexity / information density of the real UI
• Need to re-create the interface in the target technology
• May not allow real-time end-user interaction

10.8.1.2 High-fidelity visual mockups

• Keynote, Powerpoint
• Flinto+Sketch
• Figma
• InVision
• Adobe Xd

10.8.1.2.1 Disadvantages
Distorts perceptions of the tester:

• Formal representation indicates “finished” nature
• People comment on color, fonts, and alignment

Discourages major changes:

• Testers don’t want to change a “finished” design
• Sunk-cost reasoning: Designers don’t want to lose effort put into creating hi-fi design

10.8.1.3 High-fidelity, fully-interactive prototypes
Should look and behave like the final application.
Takes a lot of effort to build – too little payoff – only use as needed?

Example tools:

• HTML+CSS+Javascript
• Apache Cordova etc

10.9 Video Prototyping

Make sure to demonstrate each of the features/functionality your application will have.

Add structure to better explain content:

• Begin with a title
• Follow with an “establishing shot”
• Create series of closeup & mid-range shots, interspersed with title cards
• Place a final card with credits at the end

Can use stub-motion animation to help do this.

59

11 Tuesday, February 21st: Visual Design

11.1 Graphic Design

11.1.1 Communication

11.1.2 Interpretation

11.1.3 History

Let’s look at the start:
Materials are meant to be read and distributed, which means that you need to make sure texts are
laid out in an understandable manner.

Terms such as upper case and lower case came from the separate cases used in printing presses –
terms which are still used today.

Main idea: history influences the current state of design.

Churches or loyalties – had lots of needs and wanted their words to be replicated. However after
the 19th century, people have more disposable income so advertisements appear.

11.1.4 Minimalism

The London Underground is a great example of a simplistic yet ‘does its job’ kind of logo which
has withstood the test of time.

11.1.5 Bauhaus Thinking

Lots of Professors from the Bauhaus School of Art fled Nazi Germany and in going to the USA,
etc they spread their thinking.

11.1.5.1 Single axis of view
A single vertical axis allows the user to read the text from top to bottom without confusion on
where the next word(s) will be.

11.1.5.2 Grid-based Design
Every single element on the page is aligned to horizontal/vertical lines on an underlying grid.

Note that the grid does not have to be square or even axis-aligned, it just needs to be there to give
structure.

60

11.2 Visual Design

11.2.1 Corporate Identity

IBM is a good example of a recognizable identity that is displayed on their posters as a brand mark.

11.2.1.1 Logos
This design of typefaces, size, color, etc is used even in Web Design – think of the BBC news
channel: their logo is recognizable and displayed on the top left of https://www.bbc.com/

11.3 Product Design

Product Design is about Form and Function.

11.4 Streamlining

This can be helpful but you should not take it too far.

11.5 Form Follows Function

It is the pervading law of all things organic and inorganic,

Of all things physical and metaphysical,

Of all things human and all things super-human,

Of all true manifestations of the head,

Of the heart, of the soul,

That the life is recognizable in its expression,

That form ever follows function. This is the law.

- Louis Sullivan

11.6 Simplicity and Elegance

“Good artists borrow (from other artists), but great artists steal!”

- Pablo Picasso

61

https://www.bbc.com/

11.7 Simplicity

Simple, minimalist, designs are often most effective.

This is likely as there are less ways to interpret them (it has approachability, recognizability, and
immediacy).

11.8 Elegance

The scrollbar is a good example of elegant design as it allows scrolling and indicates position in
document.

11.8.1 Reduction

Only include essential elements.

11.8.2 Regularization

Use one set of shapes, colors, forms etc.

11.8.3 Leverage

Use elements in multiple roles.

11.9 Unity

One path to simplicity & elegance is through unifying themes:
Forms, colors, components with like qualities.

Think of street signs.

11.10 Refinement

Draw viewers’ attention to essential information.

Straighten subway lines to emphasize sequence of stops.

! Mistakes: Clutter & Noise. Don’t overdo it (especially with 3-D models on a 2-D screen).

62

11.11 Color

11.11.1 Color Spaces

11.11.1.1 Additive vs Subtractive
Also known as RGB (red, green, blue) vs CMY (cyan, magenta, yellow).

These are used in Electronic Media and Printed Media respectively.

11.11.2 Perceptual Organization

There are 3-axes of color balance: Colorfulness, Hue, and Lightness. These parameterize our
perception.

11.11.3 Munsell Color Space

Perceptually uniform book of painted chips

Pro Tip:
Let Someone Else Pick For You

Some UI frameworks provide default themes... and color resources!

11.12 Gestalt Principles

From Ware’s 04 Paper:

11.12.1 Figure/Ground

Relative size.

11.12.2 Proximity

Introduce spacing/underlying grid.

Group related elements – use size and typeface to allow scanning for groups.

63

11.12.3 Similarity

Can allow you to draw attention to one over the other ∈ {rows, columns}.

11.12.4 Symmetry

Bilateral symmetry gives strong sense of figure.

11.12.5 Connectedness

Connectedness overrules proximity, size, color shape.

11.12.6 Continuity

We prefer smooth not abrupt changes.

Connections are clearer with smooth contours.

64

11.12.7 Closure

Figure 3: We see a circle behind a rectangle, not a broken circle.

11.12.8 Common Fate

Dots moving together are grouped

11.12.9 Transparency

11.13 Fonts

11.13.1 Serif

Flags/projections jetting off from the top of letters.

65

11.13.2 Sans Serif

Translates to “Without Flags”

11.13.3 Monospace

A font where the space in between letters are fixed. The only use they have is for code/data/text
where vertical alignment matters (i.e. Python code).

! You should not use this for long texts.

66

12 Thursday, February 23th: Midterm 1 Review

12.1 Logistics

The quiz will be on bcourses under the “Quizzes” section. We will post a clarification form and
have times on when we will monitor Ed posted.

12.2 Composition

Use grid systems – what most web apps use!

Note that a text can be multiple grid cells but you mentally think of it wrt multiples of grid cells
with whitespace in between.

12.3 Alignment

Every item on a screen has a relationship to the other items. Elements that are almost collinear
should be aligned.

Left, right and both-justified alignments create strong boundaries around a piece of text – do not
center allign text as you do not have an easy side border to read in a deterministic non-causal
manner.

Its best to stick with one kind of justification within a page.

12.4 Common Mistakes
!

• Arbitrary component positions and dimensions
• Random window sizes and layouts
• Unrelated icon sizes and imagery
• Poor alignment

12.5 Summary

What are the 3 stages of design cycle?

The Design Cycle is not everything.

As you go through the design cycle, you consider lots (¿50 in brainstorming) but you end up
shipping 1 product (divergent → convergent phases).

67

12.6 Review

This has been added to the previous sections, as is relevant.

Good exam questions:

• If I tell you an object, tell me what its affordances are?
• Give an example of a mode that wasn’t mentioned in lecture slides.
• Give an example of a task that follows a power law (i.e. typing).

68

13 Tuesday, February 28th: Midterm 1

There is no class today due to the midterm!

13.1 Next Class: Thursday, March 2nd

13.1.1 Work with your groupmates

There is also no class today to give you an extra chance to work on your project!

69

14 Tuesday, March 7th: Visualization Patterns

14.1 Information Visualization, Design Patterns

Verbal Notes not given in lecture slides:

• EDA: Exploratory Data Analysis is used for performing critical investigations in data to find
patterns

• Start with Color/Orientation/Shape so you’re not that constrained for adding O/Q features
in the future

• Delta Stimulus
• Loudness = approx 6.5
• Heaviness and taste greater than 1 =⇒ we overestimate those sensations.
• Certain Visual Variables are better for comparisons.

70

15 Thursday, March 9th: Usability Inspection

Empirical studies are very expensive in terms of time and money

15.1 Usability Testing

15.1.1 Inspection Techniques

1. Cognitive walkthroughs: put yourself in the shoes of the user. Check to see if the path users
want to go is clear and logical.

2. Heuristic Evaluation: assess based on predetermined criteria / heuristics
3. Other non-inspection techniques (mechanical turk)

15.1.2 Cognitive Walkthrough

1. Get concrete goal
2. get actions needed to complete said goal
3. At each step as

(a) Will the users know what to do?
(b) Will the user notice that the correct action is available?
(c) Will the user interpret the application feedback correctly?

15.2 Example: Find a book in a library

1. find the library website
2. find location of said book
3. complete search form
4. parse through to find latest edition
5. click to get to the book’s page
6. find library and call number

15.2.1 Heuristic Evaluation

1. Heuristic: rules of thumb that describe features of usable systems
2. Example: Minimize user’s memory load

(a) get small number (3-5) people together to look at the UI separately
(b) give them list of heuristics
(c) get them to evaluate your design
(d) aggregate findings of the independent evaluators and discuss
(a) H2-1:Visibility of system status
(b) H2-2: Match system and real world
(c) H2-3: User control and freedom
(d) H2-4: Consistency and standards

71

(e) H2-5: Error prevention
(f) H2-6: Recognition rather than recall
(g) H2-7: Flexibility and efficiency of use
(h) H2-8: Aesthetic and minimalist design
(i) H2-9: Help users recognize, diagnose, recover from errors
(j) H2-10: Help and documentation

15.2.1.1 Visibility of system status

1. Spiny ball
2. buffering circle
3. provide redundant information for each decision a user makes (do you want to save changes

=⇒ your changes will not be saved if you don’t)

15.2.1.2 Match System and World

1. follow real world conventions
2. pay attention to metaphors
3. Ex: used to drag floppy disk to trash to eject it. Did not line up with what trash usually

does (data deletion)

15.2.1.3 User control and freedom

1. users don’t like being trapped
2. give them freedom to choose to cancel, escape, universal undo (ctrl-z), postpone, etc.

15.2.1.4 Consistency and standards

1. don’t violate standards since they will behave according to how they expect things to behave
2. example: put a word in a rounded rectangle implies its a button. People will click it.

15.2.1.5 Error prevention

1. Check for errors (are you sure you want to do that)
2. visual metaphors can help clear up incongruities
3. types of errors: slips (right plan, bad execution) and mistakes (wrong plan, good execution).

15.2.1.6 Recognition over Recall

1. People are good at recognition and bad at recall
2. Example: open recent files tab

72

15.2.1.7 Flexibility and efficiency of use

1. Experts want to save time
2. Example: keyboard shortcuts, autocomplete

15.2.1.8 Aesthetic and Minimalist Design

1. Don’t overload screen with information. Give them “details on demand”
2. Occam’s razor: remove or hide irrelevant or rarely needed info
3. Present information in natural reading order (read left to right, top to bottom

15.2.1.9 Help users diagnose recognise

1. When errors happen, help the users answer the “what do I do next?” question
2. write good error messages that are descriptive and offer solutions
3. Let them undo at every step

15.2.1.10 Provide help and documentation

1. easy to search
2. focused on tasks
3. list concrete steps to carry out
4. not too long
5. examples

(a) tutorials
(b) reference manuals
(c) tool-tips
(d) “whats this” cursor
(e) search help bar

15.3 Heuristic Evaluation Steps

1. Pre-evaluation training Provide the evaluator with domain knowledge if needed 2) Evaluation
Individuals evaluate interface then aggregate results Compare interface elements with heuris-
tics Work in 2 passes First pass: get a feel for flow and scope Second pass: focus on specific
elements Each evaluator produces list of problems Explain why with reference to heuristic or
other information Be specific and list each problem separately
3) Severity rating Establishes a ranking between problems Cosmetic, minor, major and catas-
trophic First rate individually, then as a group 4) Debriefing Discuss outcome with design
team Suggest potential solutions Assess how hard things are to fix

73

15.4 Pros and Cons of HE vs User Testing

1. Pros: Much faster, doesn’t require interpreting user actions
2. Cons: HE is less accurate, may find false positives (things that conceptually could be problems

but are not actually), and need multiple evaluations to be done for verification (5 is good)

74

16 Thursday, March 16th: Empirical Evaluation

Note there was no lecture on Tuesday.

16.1 GPT4: AI-based Rapid Prototyping

GPT4 was recently announced and it can be useful for rapid prototyping. You can say what you
want in words and almost automatically view a design render.

16.1.1 Qualitative Empirical Evaluation

Contextual Inquiry: try to understand user’s tasks and conceptual model
Usability Studies: look for critical incidents in interface

These Qualitative Empirical Evaluation methods allow us to:

• Understand what is going on
• Look for problems
• Roughly evaluate usability of interface

16.1.1.1 Trends from Qualitative data
Grounded Theory (Glaser, Strauss) is a way to systematically produce insights (hypotheses or
theories) from qualitative study data.

Process:

1. Review the collected data, look for concepts or ideas that emerge repeatedly.
2. Coding: Tag these concepts using codes (shorthand descriptions). Codes can be revised

throughout the process and can also be hierarchically grouped.
3. Memoing: “The theorizing write-up of ideas about the codes” – relate codes to each other,

reflect on the implications

Software tools like MaxQDA can help you here!

16.1.2 Quantitative Empirical Evaluation

Use to reliably measure some aspect of interface
Compare two or more designs on a measurable aspect
Contribute to theory of Human-Computer Interaction

16.1.2.1 Approaches
Collect and analyze user events that occur in natural use

75

Controlled experiments

16.1.2.2 Examples of measures
Time to complete a task, Average number of errors on a task, Users’ ratings of an interface†

† You could argue that users’ perception of speed, error rates etc is as important than their actual
values

16.1.3 Qualitative vs Quantitative

Qualitative: Faster, less expensive → esp. useful in early stages of design cycle

Quantitative: Reliable, repeatable result → scientific method
Best studies produce generalizable results

16.2 Designing Controlled Experiments

1. State a lucid, testable hypothesis
2. Identify variables

(independent, dependent, control, random)
3. Design the experimental protocol
4. Choose user population
5. Apply for human subjects protocol review
6. Run pilot studies
7. Run the experiment
8. Perform statistical analysis
9. Draw conclusions

16.3 Managing Study Participants

16.3.1 The Three Belmont Principles

Respect for Persons
Have a meaningful consent process: give information, and let prospective subjects freely chose to
participate

Beneficience
Minimize the risk of harm to subjects, maximize potential benefits

Justice
Use fair procedures to select subjects (balance burdens & benefits)

76

16.4 Ethics

Always ask the question: could the information from a study have been obtained through some
other means?

16.5 Privacy and Confidentiality

Privacy: having control over the extent, timing, and circumstances of sharing oneself with others.
What are you asking them to reveal about themselves?

Confidentiality: the treatment of information that an individual has disclosed with the expecta-
tion that it will not be divulged.
How are you keeping the information after it has been shared?

77

17 Tuesday, March 21st: Data Analysis

17.1 Managing Study Participants

It can be a stressful experience for Participants, which is why we follow the 3 Belmont Principles.

What kind of questions are you asking about – is it a sensitive topic that they don’t feel comfortable
sharing?

Are you going to give literal personally-identifiable info? Or will you deal in aggregates (as you
should).

Ask yourself the question: Will the person be identifiable from the information shared?

17.2 Treating Subjects with Respect

If you are doing this at a University, you need to go through IRB (Institutional Review Board).

How to let people in the study know:

• Give them a consent form which they must read and sign – you don’t need to make this from
scratch – most universities have tools to generate such a form with correct legal dictation.

• Keep a copy of the form, while making sure the participant has a copy

Don’t waste their time – debug your experiments beforehand & have everything ready.

Make users comfortable (this is a big thing in VR studies where wearing the headsets for extended
periods of time can become tiresome).

17.3 Data Analysis

Now that you have the data, how do you analyze?

17.3.1 Bubble Cursor Attributes

17.3.1.1 Hypotheses

• Quicker
• More accurate/Less Errors

17.3.1.2 Independent Variable
Cursor type (bubble vs normal).

78

Placement of the bubbles (D in Fitts’ Law).
Size (S in Fitts’ Law).

17.3.1.3 Dependent Variable

1. Time
2. Accuracy

17.3.1.4 Control Variables
Think about this yourself!

17.3.1.5 Random Variable
Think about this yourself!

17.3.1.6 Control Variables
Resulting data: usually in a .CSV file.

Attributes:

• Unique ID
• Cursor Type
• Size
• How many times it took
• Time
• etc

17.3.2 Counting Analysis

We can make descriptive statistics such as:

µ =

∑N
i=1Xi

N

σ =

√∑N
i=1(Xi − µ)2

N

17.3.2.1 Continuous Data
Central tendency:

• mean
• median
• mode

79

Dispersion:

• Range (max-min)
• Standard deviation

Shape of distribution:

• Skew
• Kurtosis

17.3.2.2 Categorical Data
Frequency Distributions (Note that there is more you can do here (i.e. error bars).

17.3.3 Cleaning Data

If you don’t visualize your data, you may have no idea that you have a bunch of bad data points –
that need to be removed.

17.3.4 Skewed Distributions

The Median is more robust to outliers.

17.3.4.1 Negative skew
mean < median < mode.

17.3.4.2 Positive skew
mode < median < mean.

17.3.5 Power Law Distributions

The distribution of photographers contributing photos of the 2005 Coney Island Mermaid Parade
is carried by a few contributors doing 100+ photos, and the rest doing much less (for an average
of 26, and median of 11).

p(x) ∝ x−α

17.3.6 Confidence Intervals

95% Confidence Interval: The range of values in which we’re 95% sure the true population mean
falls.

80

This can be calculated with the help of the standard error SE.

Standard Deviation: measures variability of individual data points.

Standard Error: measures variability of means

SE =
SD√
N

95%CI = M± 1.96× SE

17.3.7 Hypothesis Testing

Hypothesis: Manipulation of IV effects DV in some way
Null hypothesis: Manipulation of IV has no effect on DV
Null hypothesis assumed true unless statistics allow us to reject it

17.3.7.1 p-values
We need a cutoff for results to be significant p < 0.05 usually considered significant (Sometimes
p < 0.01).
Means that < 5% chance that null hypothesis is true – Likelihood that results are due to chance
variation.

17.4 Statistical tests

• T-test (1 factor, 2 levels)
• Correlation
• ANOVA (1 factor, > 2 levels, multiple factors)
• MANOVA (> 1 dependent variable)

When to use which test:

81

17.4.1 Between-subject study: Unpaired vs Paired

Between-subject study: We cut our participants into 2 groups, which each group trying a different
cursors. This is an unpaired group.

If everyone used both cursors, then it matters that these measurements both came from the same
person as that would be paired groups.

17.4.2 t-Test

1 independent variable with 2 levels,
1 dependent variable of type Q (quantitative/interval)

Compares the means of 2 groups
Null hypothesis: No difference between means

17.4.2.1 Assumptions

• Samples are normally distributed
• Very robust in practice
• Population variances are equal (between subjects tests)
• Reasonably robust for differing variances
• Individual observations in samples are independent

t-Test is somewhat robust to variations in skew as long as the distribution looks somewhat normal.

This is a parametric test.

17.4.3 Mann-Whitney’s U Test

1 independent variable with 2 levels,
1 dependent variable of type O (ordinal), or type Q when assumption of normal distribution does
not hold.
Compares the ranks of values of 2 groups

This is a non-parametric test.

17.4.4 Parametric vs non-parametric

t-Tests are parametric as it makes the assumption on the data’s distribution (that it is normal).

Non-parametric test are when one does not rely on a particular distribution.

82

17.4.4.1 When to use non-parametric tests
Preference data is the most frequently produced ordinal data (Strongly Agree vs Agree vs Neutral
vs Disagree vs Strongly Disagree – so one should use a non-parametric test here).

17.4.5 ANOVA

Single factor analysis of variance (ANOVA):
Compare means for 3 or more levels of a single independent variable.

Multi-Way Analysis of variance (n-Way ANOVA): Compare more than one independent
variable
Can find interactions between independent variables

ANOVA tests whether means differ, but does not tell us which means differ – for this we must
perform pairwise t-tests.

17.4.6 Objective measurements

• Good internal validity → repeatability
• But, real-world implications may be difficult to foresee
Significant results doesn’t imply real-world importance
3.05s versus 3.00s for menu selection

83

18 Thursday, March 23rd: Native vs Web Apps

18.1 Implementing Interfaces, Part 1

We have talked about the design process as the cycle that happens in the red phase. In the
programming assignments, you have been in the “Engineering” phase.

Before we got to GUIs, everyone interacted with computers through command-line prompts, a
model where interaction is done via the system.

18.1.1 Xerox Alto (1973)

The system is waiting for an interaction and responds once that has happened. This was one of
the first interactive programs.

One way you can do this is with a switch statement in an infinite while loop but this only works
if your computer is only running 1 process. The reason for this is because they were written by
different people.

18.2 Native Apps: GUI Toolkits

Today most native apps are written via toolkits such as QT, Cocoa, Java Swing, GTK, etc.

18.3 Native Apps

These are self-contained programs made to run directly on a target OS (Windows, Linux, MacOS,
Andriod, iOS, etc).

There are a multitude of UI toolkits even if there is a ‘canonical’ toolkit for the OS, and third-party
toolkits can help you get closer to the platform-independence that web apps. However this has the
cost of not looking like it was meant for the current OS.

An advantage of Toolkits over Web Apps is that they are generally quicker in updating to allow
using new hardware.

Note that Programming Language is orthogonal to the toolkit. You can use almost any language
for almost any toolkit.

! This means that you will have to have an ‘Android Team’ and an ‘iOS Team’ – even if you
share some code, the frontend UI will be split across 2 codebases with completely different
code.

84

18.3.1 Android SDK Example

- Highest Level
View Class
Activity System
Native Libraries + Android Runtime
Linux Kernel
- Lowest Level

18.4 Web Apps

This semester we are working on web applications which are delivered by a web server and run on
a web browser.

A Client requests resources from server.

A Server transfers data for UI and interaction logic to client.

A Browser on the client parses received data, builds & renders the UI and processes user input
events

You can refer to names in the DOM in JavaScript – a language for defining interactive behavior.

Note that with different OS/vendors, you may see some slight differences.

There are Pros/Cons to using Web & Native Apps and these can be seen in the table in lecture
slides.

18.5 Disentangling

We usually separate HTML DSL from CSS/JS code.

Instead of using <style> and <script> tags, we designate explicit .css and .js files for CSS &
JavaSctipt code respectively.

85

18.6 DOM (Document Object Model)

18.7 Web App with server-side code

18.8 Client-side Web Frameworks

HTML was made for Documents – not UI.

• React JS (Facebook)
• Angular JS (Google)
• JQuery

Note that JQuery is still considered a Client-side Web Framework even though it does not really
change how your server communicates like the others.

86

19 Tuesday, April 4th: Native Events – Widgets, Events, Model-
View-Controller

19.1 Unexpected Circumstances

The Professor tested positive for COVID, and thus class will be virtual for today and Thursday.

19.2 Administrative Matters

Midterm 1 grades have been released. The midterm was out of 125 points total (though there were
up to five extra credit points). The following statistics are about normal for an exam in CS 160.

19.2.1 Midterm 1 Regrades

Standard regrade policy applies here to request a regrade, please write a detailed explanation for
your request and submitted via the regrade request form that’s on the syllabus for the course.
Please do that within one week. Do not email directly – then Course Staff just lose track of all
the requests. Make sure to do this especially if the point total on the question does not match
the feedback you’ve been given. Or if we just forgot this to grade something, we’re fallible, this

87

happens, sorry, we will fix that. Please do not argue with us about partial credit. Credit on a given
question. Since like one person consistently graded a poll question for everyone in the class. And
so we tried to be very consistent in how we assign partial credit. So your number is in similar in
relation to other students who provided a similar answer.

19.2.2 Midterm 2 Logistics

Midterm #2 will take place next week, Tuesday April 11th 2023.

The format will be the same as midterm #1 – it will be released the midterm online through
bcourses at 09:00 A.M.

You will have 90 min within a 24-hour time, 24 hour time window to take the exam which will once
again have a mix of multiple choice and open answer questions.

! Midterm #2 is not cumulative. This is not a final exam. We will only ask about material that
was not yet covered in midterm #1.

19.2.3 Scope:

This means the material we’ll cover is that from lectures 14 through 20, information visualization,
usability inspection methods, usability evaluation, data analysis, and three lectures on implemen-
tation of which we are in the second right now.

19.2.3.1 Readings Scope
Readings: we will not ask you about information visualization readings since we made that optional.
We will ask you about the two Martin chapters on experiment design interpreting data. The
heuristic evaluation links provided in the heuristic evaluation assignment are also fair game – they
should pretty much match what we covered in class. The last reading on how browsers work is also
in-scope.

19.2.3.2 Course curving scheme
Question: Is this class curved?
Answer: This class is not usually curved. Usually we get just about what we want in terms of a
an upper division or a master’s class great distribution by just taking straight values. Usually the
exams tend to be a little lower than the project assignments and the homework assignment grades.
We will definitely not curved down. We can take a look if all the values are significantly below
where they should be. If so, then we curve up but haven’t had to do that in the past – so I would
not expect that to happen this year either.

88

19.2.4 Next Team Project Assignment

The next team project assignment is a heuristic evaluation. Now, heuristic evaluation is a discount
usability method as we discussed, that should be quick to do. That’s why we only were only
assigning one week. And in fact, you will do most of the work for this assignment. In section this
week. You will conduct a heuristic evaluation on another team’s Figma prototype and vice versa.
Another team will evaluate your Figma prototype. This will happen in sections, so it’s important
to attend section. You will then share the report of what juristic violations you found with the
other team within 24 h of section. And you will receive your report and then you as a team, we’ll
discuss, well, what should we do, what should we redesign based on these usability violations that
were found? Briefly write that up, and then submit that to us. So I would say the majority of
the work for this assignment happens in section. And then maybe there’s another hour or so a
team meeting that you should have afterwards to interpret the results. So in the larger scheme of
things, this is a much smaller team assignment than the ones you’ve done previously. If since you
submitted your Figma prototypes to us, you’ve had other ideas, your thinking has evolved. Feel
free to iterate and change your Figma prototype. Before this week’s section. If you think it’s fine,
you don’t need to do anything.
Following this week, we will have three weeks of weekly implementation check-ins in sections. So
you will submit a brief progress updates to us. And then in section, meet with your team to work on
your project and also check in with your GSI to discuss your progress, what you’ve accomplished,
what remains to be done, what your plan is. So we want you to every week for the following three
weeks basically make for here on progress. So you’re not keeping it all for a rush at the end. That
takes us through the last week of regular classes. During RRR week. We then have our scheduled
demo session, that is Wednesday, May 3rd at 02:00 P.M. That’s where we will you will show your
final demo to class staff and the public. And you will also have a poster about your project. And
then during finals week, one week afterwards, we give you one extra week to put together final
video and team evaluation.

19.3 Native App Concepts

• Native applications provide a “cleaner” and simpler architecture for constructing interactive
applications bc that SW stack was built for interactivity

• Web apps had interactivity added on top of a document-centric, distributed client-server
system

• GUI Toolkits
– We don’t write the main function

• Widgets
– Modular components that get reused again and again
– Ex. Android lists or date/time pickers, buttons, toggles, text fields, etc

• UI Components
– Each component is an object with:

∗ Bounding box
∗ Paint method for drawing itself
∗ Something else

– 2D graphics model
∗ Typically top left to bottom right

89

– Sizing
∗ Widgets are not in control, bounding box is controlled by Layout Manager
∗ Component has to know how to draw itself at a size provided by LM

• Working with Widgets
– Make common case fast, uncommon case possible
– Common case: assemble standard widgets into a layout

∗ Instantiate class, provide configuration parameters
– Uncommon case: write your own widget

• Absolute layout
– Good idea? Provide absolute coordinates for everything

∗ Bad idea in general outside of prototyping, hardcoding parameters only works for a
given screen size

• Event Dispatch Loop
– Mouse moved = Event Queue (sorted queue of input events) → Event Loop (runs in

dedicated thread)
∗ Event Loop:

· Remove next event from queue
· Determine event type
· Find proper components
· Invoke callbacks on components
· Repeat or wait until event arrives

– → Component (invoked callback method, update application state, request repaint if
needed)

– Model-View-Controller
∗ Model
∗ View
∗ Controller

· Receives input events from user, decides what to do by talking to view to deter-
mine which objects are being manipulated

· Calls model methods to make changes on objects
· Model then notifies views to change

– Why MVC?
∗ Combining MVC into one class will not scale

90

20 Thursday, April 6th: Browser

20.1 Midterm Logistics Review

This is the last class before our next midterm – so we will start by reviewing the midterm info
again: Midterm #2 is next Tuesday, April 11th. The same format as midterm number one, which
means you don’t have to come to the classroom. You can if you want, but the midterm is happening
online, will release it at 09:00 A.M. you then have 90 min or 90 min times here DSP exam time
within a 24 hour window to take the exam. It is on bcourses as a quiz. We once again have a
mix of multiple choice and open answer questions. Most importantly, it is not cumulative. Only
material that’s not been covered in midterm, one will be on the midterm too. So what is that
material? Well, it’s lectures 14 through 20, information visualization through number 20, that’s
today, browsers. And the associated readings, which include the two readings, experiment design
and interpreting data. The readings on heuristic evaluation, which will lengthen your heuristic
evaluation assignment and then how browsers work. Reading that we assigned. You don’t have to
submit an answer, but it’s a part of it.

We had some questions about practice midterms. So there are two practice midterms on bcourses
under Files, midterms. Those were both examples of second midterms from CS 160. And just the
caveat, that material has slightly changed. So we will not ask you about the specifics of Android.
You might see some questions in the practice midterms about that because that is no longer the
focus of the class. We will also not ask you about midterm one material. So some of the practice
midterms, e.g. have questions about color spaces, which we already covered in midterm. Number
one. So take it as a guideline of the types of questions we’ll ask, the format of the, of the questions,
but we will tailor it to the actual lectures we covered this semester. It will once again be open
book, open notes, but you shouldn’t be talking to other students in the class about the exam, just
like midterm number one question, will there be coding? We might ask you some questions that
where we show you some code and ask questions about it. Like we might show you HTML, CSS,
and JavaScript, but we will not ask you to write code. Yeah, So just to repeat, we might show you
code, but we don’t ask you to write code to answer the questions.

20.2 Implementation

Today will probably be a shorter lecture partially because it’s such a complex topic – and we should
just focus on the the high-level takeaways.

20.3 Where are we in the course?

We talked a lot about the design phase and right now we’re in the kind of what’s the engineering
of user interfaces look like. That’s what you’re programming assignments were about, that’s what
your implementation of your team project is about. And then in the lectures that we’re currently
having, we’re looking like one layer beyond that because the code you write, What’s the system
underneath it that works with that code to actually render interactive interfaces to the user. Okay,
so here’s the quick review of what we talked about last lecture. So native application concepts,

91

right? What did we talk about? We talked about key concepts or widgets or controls. Those are
the templates for buttons, date pickers, drop-down menus, radio buttons, etc. And how are they
architected? Well, they implement drawing, bounds management and event processing. So they
know how to draw themselves. They know how to draw themselves when they get resized. And
they can process input events. And some of that processing comes kinda out of the box, right? So
a button automatically renders itself as depressed when you press the mouse button over it. And
then some of the event processing is basically gives the structure for you to add your own code.
So your event handlers so that your own code can execute when that button gets pressed by the
user. We talked about that widgets are laid out in a containment hierarchy, right? So we have this
tree where all the internal nodes of the tree, our layout nodes and all the leaf nodes are the actual
widgets. And the layouts determine how the children of the layout note get arranged on screen.
And so parents allocate space for children. And so the layouts allocate space and then tell the
widgets, Hey, you have the following bounds. Draw yourself. We’ve talked about most modern UI
toolkits support declarative layout of UIs. So basically, this is usually done in some XML dialect.
Right here. What happens in native apps looks kind of like what happens in HTML. You have
some XML dialect that specifies at compile time what the structure of the Uighurs.

However, we also want this to be flexible. And so usually they’re also, you can encode also directly
manipulate that, that structure to dynamically change the tree at runtime. Then we also talked
about events. And events are how we deliver information about user input. Two components and
the user interface. And they are the key diagram we talked about was the event dispatch loop,
right? Where you have a Q input events go into that queue. The main event loop in your UI toolkit
pops these events off one-by-one, figures out what UI components to deliver them too, and then
calls the appropriate event handlers on those UI components and delivers the event to them. Then
the last thing we talked about was Model-View-Controller. As a way when you do object oriented
programming, how do you write the classes that make up a user interface in a way that is extensible
and maintainable. And so the key concepts there’s you have model classes that just capture all of
the information, right? So in a drawing app that would be describe the shapes that are on screen.
How big are they? What are their positions? What are their colors and other attributes? Then we
have the view classes, which are responsible for rendering a model onto screen. And then we have
the controller classes which take input from an input device and then update the model. Then
when the model updates, right, the associated views update. And so that was the cycle of how we
go from input to output. But in a structured way that is easily extensible and maintainable. So
we can add information to our model without having to touch any of the view code. We can add
extra views to our application without touching any of the model code. All right?

Here are a couple of things we already talked about. Event handling, part of the model or controller.
So great question. Event handling is not part of the model. It’s part of the controller. The controller
receives the input, such as I drag on the handle of a shape that’s onscreen. The controller may then
interpret this as 0. That means I should the user just re-size this shape. So let me find the model
class and update its internal width parameter, which in turn then leads to a request to redraw
the screen. But event handling happens in the controller. But as a result, we usually then in the
controller update the model. Another way to think about this is that if you’re assembling your
UI from pre-existing widgets and controls, right? Event handling happens in Callback functions
on that, on that widget. So that’s a control class. Usually you’re the internal, how you store
information about the application. Those are classes that you create that are not subclasses of
widgets and controls, right? Those are model classes. And so event handling happens in the
controller, but it often updates a model class as a result. Okay? And then I wanted to go over

92

these slides again. So we talked about wet versus native apps, some pros and cons when you would
choose which makes a compatibility on the web is great. You need one code base. We’re native
apps, it’s platform specific, and you might need multiple code bases if you target multiple mobile or
laptop operating systems. Software updates and web apps are of course, incident. As soon as you
push new code to the server on native apps, that requires we installation of the application. But
web apps by themselves cannot run offline. Native apps can. However, these days can all the data
usually involves some web service. And so even a native app. What good is Netflix? If you can
start up the Netflix app, but you can’t access any movies. Not that useful. In terms of functionality
we talked about that web apps are often kind of one generation behind what is available natively.
And that when a new piece of hardware comes, comes around, like a depth camera or another
new type of sensor. That usually, there’s usually a native application framework first for using
making, taking advantage of that hardware. And then performance-wise, usually web apps have
lower performance because there’s the additional complexity of the browser and we tackle some of
that complexity today. Whereas the native applications you can write. Timing critical components
in some low-level compile fast language. And then we also did some mapping of concepts onto each
other, right? So how do you declaratively define what the UI structure look likes? It looks like
in a native app that some XML layout file in the web app. It’s HTML. And we’ll talk again how
today, how that is not a true XML file, even though it looks like one. Visual appearance rules, we
use CSS and Web Apps. And there’s usually a notion of styles and themes and Android or other
native apps. Css is an especially complex way of implementing visual appearance rules. We’ll talk
about that a little bit today as well. Application logic is usually written in some native language,
right? And UI toolkit in a native application, in a web app gets split across client and server.

We usually have some way of bridging between the application logic and that declarative UI struc-
ture. And how do you define different screens? Well, in a native application that is usually some
class, whereas in a web app is just you navigate to a new URL. One last piece of review is what
happens when we request a web page from a server. So basically this is the quick review of how do
we get all the HTML, CSS, and JavaScript to the browser? And then the rest of today’s lecture
is, once it’s in the browser, what do we do with it? So remember that for web apps, we need a
web server. The web server has access to files and then our computer, the computer of the user
in this case is the client. It sends a request for a particular resource to a web server. So that
happens for web apps over HTTP, Hypertext Transfer Protocol Addresses are encoded as URLs,
Uniform Resource Locators. The web server receives the request and then maps that through its
internal logic to, okay, so what files do I need to retrieve from my file system? What HTML, CSS,
JavaScript should I retrieve? It can of course construct these on the fly as well with computation.
It then delivers them back to client and the client. The browser then renders the files as a web
app user interface. All right, so then today, the topic is once we’ve received those types of files like
HTTP or HTTPS and the browser, what happens next? And so I’m just going to walk through
some of the key concepts in the reading that I’ve assigned for this. Alright, high-level structure of
the browser. The browser’s main components are the user interface of the browser as well itself.
That is, everything that’s not the browser window, right? It is the menu bar. For the browser. It
is the URL bar where you enter the URL. It’s the backwards button, it’s the bookmarks, etc. So
everything that’s not the requested page itself. Then there’s a pair of a browser and a rendering
engine. The rendering engine is the key most complex component for displaying the requested
content. So if you request it an HTML document, it’s responsible for parsing the HTML and the
CSS and displaying that on screen. We will mostly talk about that today. The browser engine
is basically the layer in-between. Like that, uses what you do in the browser user interface to
send commands to the rendering engine. There’s a networking component, which is basically the

93

previous three slides, right? How do we actually get the documents from the network for requested
URL? And then for all the other documents that might be LinkedIn, it is a JavaScript interpreter,
which is usually separate from the rendering engine. So here’s a difference between native apps and
web apps. And native apps were the Part of interpreting the UI and where you put the callbacks,
that’s part of the same UI toolkit in the browser, we have separate render, rendering engines of
JavaScript interpreter’s. The browser also then has a UI backend. We’re basically says, Okay, I’ve
received all of this HTML and CSS. When it comes time to draw it on the screen, it’s still uses the
underlying graphics primitives of the platform it’s running on. So just like a UI toolkit in the end
will resort to 2D drawing primitives like put text on the screen here, draw a line, draw a rectangle.
The browser in the end uses those same calls as well. Then the last component is there’s usually a
data persistence layer where e.g. all the cookies that you receive gets stored. And HTML5 also has
kind of a local storage component where data that’s local to the user can be stored in the browser.

All right, So that’s the high-level structure of the different components of a browser. And then
most of today we’re going to spend on an overview of how rendering and JavaScript works. So,
okay, question here was, what about the direct arrow from user-interface to UI backend? When
does this happen? So think about the browser Chrome, like thinking about the address bar and the
back button in the browser, that has to get drawn on screen as well, right? And so there, the user
interface component of the browser uses the UI backend to use those low-level drawing primitives
to put the buttons and menus on screen. Thanks for the question. All right, let’s keep going here.
Okay. So high-level overview, what the rendering engine does, it is it gets the HTML and the
CSS. It has to parse them to understand their structure. So HTML goes kind of video content
tree, CSS goes into a style tree, and then that information has to be fused together to determine
for a given element what style should we render it in? That’s called constructing the render tree.
And then the render tree has all of the components that should be displayed on screen and now
has their visual styles. And then there’s a layout pass where you determine, well, where, how big
is it, where should it go on screen? And then once you’ve done a passive or that, then painting
happens, which is using the UI backend. You just draw stuff into the viewport. On the JavaScript
engine, we get the JavaScript, we parse that, we compile it and execute it. Alright, so let’s delve
into that. Let’s start with the rendering engine. Okay? So the rendering engine, that’s the piece
of code that’s responsible for displaying the received content in the browser window. Most of the
code and rendering engines focus on HTML CSS, because that is what the width is built on. But
rendering engines can also have plug-ins and extensions to handle other formats, right? E.g. most
browsers can directly render a PDF. So there are some extension for rendering PDF structured
data. But most of the core of the rendering engine is for HTML and CSS. Now, different browsers
use different engines. And one thing that’s interesting here is that basically what we use today
is all, all goes back to open source software. So for those of you who are using Linux, you might
have at some point used browser called Katie conqueror. And that had a rendering engine called
K. Html was particularly standards compliant. And then pretty much everything else that the
commercial companies use these days somehow goes back to that open source code base. So Apple
Safari browser, the rendering engine is called webkit and web kit at some point was forked from K
HTML. Google Chrome uses a rendering engine called blink. Blink at some point was forked from
webkit, or more precisely, it’s web core component. So also goes back to HTML. Interesting detail
is if you use Chrome on iOS, on an iPhone, then it actually Doesn’t use blink, it uses webkit because
that’s an App Store policy in iOS. So their Chrome actually uses different rendering engines based
on the platform that you use it on. Microsoft Edge, microsoft used to use it, right, its own rendering
engine. They’ve now abandoned that and they’re also using blink. And then the only other kind of
independent project that has significant traction is Mozilla Firefox. They use gecko and of course,

94

Firefox also open-source project. Let’s look in one level more detail how this rendering engine flow
works. So we start by receiving HTML and style sheets. Then we parse the HTML and the output
of that is a DOM tree.

So the Document Object Model tree, style sheets, we parsed and we get a tree of style rules. And
then there’s this merging process where we attach style rules to particular elements in the DOM.
And that yields a render tree. The render tree has to go through a layout phase and then goes
to painting to draw. Once layout determines the sizes and positions of elements, we painted onto
screen, onto the display.

20.4 Parsers

Alright, so let’s talk for a minute here about parsers, how that works. So let’s maybe get a show
of hands.

Who here has taken CS 164 or a version of it – a PL (Programming Languages) course.

Today we are gonna to see the high level intuition of how basically HTML and CSS are custom
domain specific languages that for you to program a document structure and visual attributes.
And here’s like one-six-four in a nutshell of how you parse and then interpret a custom domain
specific language. If you want to know more about it than I highly recommend you take that course
probably with Sarah Jason’s or Zen. Super important can a basic topic in computer science. Okay?
So we just received a document which is basically a bunch of characters and we want to understand
the meaning of that document. So a common pattern, Which mode, which we use to interpret most
programming languages and most domain-specific languages is. We go through a two-step process
of first flexing and then parsing. And so lexical analysis, we usually, we turn the document that
we’ve received into a stream of tokens. And so a token could be, this is a string, this is a number.
This is a special character. Usually we define what a token is, two regular expressions. So we passed
all the characters we received in a document through a set of regular expressions. See which ones
match, and then emit a bunch of tokens. In the next step, we then consume the stream of tokens
and try to build a hierarchical representation. So a parse tree out of this tokens. The way we
use that we do that is usually we define a context-free grammar that defines the structure of legal
statements and expressions in our language. The usual tools that you, there’s lots of tooling around
that. And so traditionally in Unix and used to be lex and yacc, those tools are now called flex and
bison. So one is a lexer, the other one is a parser. There’s also, by Professor at the University of
San Francisco, wrote a tool that has a great community called antler, which is a parser generator.
And so what you usually do is you provide a definition of for Alexa, you provide a definition for a
parser. And then a parser generator will generate the code that can then process a document and
give you a parse tree back. So let’s look at a really simple example. Let’s look at here’s a snippet
of valid XML. Tag, attribute equals value, some text in between and then end tag. How do we
create a parse tree for that example? So here’s what a simplified XML lexer and Parser would look
like. That could deal with such input. So first you would define a lexer. So here what you see is
basically on the left-hand side, you see a definition like I define a token like tags start open. That’s
the name of my token. And what is it? Well, it’s the string Open tag. Tag closes the string close
tag. Then we have something like a digit. And now this is a regular expression. It’s a digit 0-9.

95

Letter is between lowercase a to lowercase z or uppercase a through uppercase Z. Whitespace is a
tab. New line or a space. I’m an identifier is a letter or some sequence of letters and digits, right?
So I define a bunch of regular expressions and give them names. And once I have these in place,
right, I can just scan like start scanning the text I’m given and say, Oh, here’s a tag, start open.
So I admit that I emit that token, does. Next thing that matches what I defined as generic ID is
another generic idea. Here’s a tag close. Here’s something that’s not within a tag in in XML that’s
called PC data. Parsed character data, sorry. And so we just turn this document we received into a
set of tokens. And then the next thing you do is once I have that set of tokens, I define a grammar.
Where the grammar can have I defined rules that match some sequence of tokens and other rules,
right? So e.g. two, start, the start tag in XML. Is we have that. Sorry, let me try to get to. This is
just this character, right? Generic ID, that is the name of the tag. Then we close the tag, that is
this. And then we have zero or more attributes that can be in there. What’s an attribute? Well,
this is a different rule. An attribute has some name, equals, that’s the equal sign. And then it
has a value. And then by the end, so we define these rules. And then we say an element in XML
has a start tag. Inside of it. It can either have other elements or just some texts. Zero more of
those. And then we have an end tag. So now we’ve defined a grammar over these tokens. And
what I can now then do is construct a tree based on matching grammar rules, right? So we have a
top-end element that is this whole string. Within that. We have start tag that goes from here to
here. We have some text inside of it that is from here to here. We have N tag that goes from here
to here. And then within the star tag, this matches the name of the tag itself. And then we have
an attribute node, which has an ID, which is this part, and a value which is this part. Of course,
inside of this tag, we might have other tags in here, right? And then the tree would just get more
complex. So through this two-state stage process, we started off with just some character data that
we received in the browser. And then we now turned it into a scree representation of that domain
specific language. Okay? So unfortunately that is, it would be great if we, we’re done here. That’s
the basic approach of how you parse CSS and JavaScript. For both CSS and JavaScript. We can
define a set of lexer rules. We can define a context-free grammar and we can parse it in that form.
Unfortunately, that does not work for HTML. And other question is, why not? Html looks like
XML, right? Shouldn’t just be an XML dialect. And unfortunately, HTML rakes some of the rules
of XML in a couple of ways. So examples of valid HTML that are not valid XML, an image tag,
the image source URL here. Why is this not valid XML? Because it doesn’t add any point have
a closing tag. Same thing for a new line, a line break. What’s missing? We don’t have a closing
tag. Another example, you can write input type equals checkbox. But based on the rules that we
defined, every attribute, the value has to be in quotes. So there’s a bunch of ways in which you
can write HTML that’s valid HTML. But it’s not valid XML. As a result, you cannot use standard
context-free grammar based parser. It can deal with these edge cases. The other big reason is lots
of people write HTML by hand and they make a bunch of mistakes. And browsers want to be able
to render HTML even in the presence of errors. They don’t just want to throw up an error set
malformed HTML. I’m not going to show you anything. Let’s talk about that for a moment. Okay,
here’s some HTML. Look at it and tell me in the chat what is wrong with the following snippet
of HTML? There are multiple errors in here. Look at it, think about it, and then tell me in the
chat what you think is wrong. Alright? Says nested tags. In particular, what’s, what’s wrong with
the nesting? Yeah, okay, farm Rahul and rationality all have the right idea, right? As these two
go together. And these two go together. This breaks the nesting relationship. The P has to be
closed within the div to be valid, right? But people do this, people write stuff like this. So the p,
This would need to move down here. Okay. Anything else you see that is wrong, right? My tag
that doesn’t exist, that is not a valid HTML tag, not part of the HTML spec. So what should a
browser do when it receives such HTML? To just throw basically a compile-time error was like, I’m

96

not going to render this document. In general, browsers say no, that’s not what we should do. We
should try to fix the errors that are here and just do a best effort at rendering.

Okay? So what happens is HTML parsers as implemented in browsers, they still have a tokenization
and a tree construction phase. But we don’t just use the standard lexer and a parser. There’s like
more complicated code that runs that e.g. checks for all kinds of custom error conditions and then
corrects the HTML’s ago, we think maybe you meant this. So we’re not gonna go into the details
of how that happens, but you can look it up into HTML spec on this link, which suggests the
structure of such a parser. So high-level structure of the parts are still the same, but at a low-level
would actually happens under the hood is way more complex. Okay. Now we get to parceling CSS.
Css is much more well-behaved. Css. The language definition for CSS is really clean and can be
parsed with the standard lexer and Parser. So we take something like the character stream up here
and then we produce a tree of CSS. Alright, so we’ve passed our HTML with a much more complex
parser, constructed a DOM. We parsed CSS and we now have our CSS tree. What do we need
to do next? Well, what we want to end up with is a render tree. So a render tree has the visual
elements in the order they will be displayed on the page. And each node or render knows how to
layout itself and its children. So that’s a render tree, kind of like containment hierarchy, right?
Each node knows how to draw itself. The renderers and the render tree kind of correspond to DOM
elements, but the relationship is not one-to-one. E.g. the head element in HTML, anything that’s
in the head doesn’t get rendered in the viewport. Elements with a CSS style of display, none are
not rendered. On the other hand, we have complex elements like a drop-down on a form that might
need multiple renderers. So we end up with some tree here that has a relationship to the DOM, but
it’s not necessarily a one-to-one relationship. The next important thing we need to do is we need
to match which visual styles that are defined in CSS and HTML we should attach to each of the
nodes in our render tree. Visual styles. There’s a bunch of different ways in which you can define
visual styles. So you can author CSS rules. Css document. You can also in the HTML L itself,
have CSS style attributes. In addition, HTML has visual attributes, like setting the background
color on a paragraph, which is not CSS syntax, but also defines a visual style. We have three
different sources of where style rules come from. And then for the CSS rules, they actually can be
many different style sheets that a single UI loads it. So in particular, there are not just the page
style sheets. These are the ones that as an application developer, you define. But the browser also
has a default style sheets. So if there are no CSS rules, what font you use, how big should it be?
That’s a browser default style sheet. And then each user profile in the browser can also have style
sheets where you just set your preferences. I want everything rendered at 150 per cent. I prefer the
following background. And then each style sheet can have many rules. Now there’s a question of,
well, how do we look up which rule to apply when this is where the cascade order comes in, which is
the C in CSS, right there. Not just style sheets, but they are cascading style sheets. So what does
the cascade order mean? You can look it up in the specification for CSS. It basically says there
is an important, there’s an order of importance. So in ascending order, the least important rules
are user agent that those are the browser rules. Browser user normal declarations, these are the
user’s preferences. Author declarations are the author of the web app, right? So this is web app.
And then there is a level of importance. So if you have a exclamation mark important rule, then it
kinda supersedes others. So you first look up, is there a user important declaration? If not, let’s go
through the Web App declarations. Then let’s go through the user’s normal preferences and then
the browser preferences. And basically the higher, the higher ones take precedence over the low
ones. So that’s what we mean by the cascade order in cascading style sheets. And then the other
part that happens is we have a tree, right? We have a tree of HTML. Elements are dumb. Next
thing that happens, let’s say we’re at this element down here. What do we do? We look up the

97

cascade. So these were the rules I just talked about. Can we find a value for background or text
color? If so, we use it. If not, we go up the tree and we check, did this node define background,
color and font? If so, we use it from here. If not, we go yet further up the tree. So the upshot of
all of that is actually matching styles two nodes is not a trivial process at all. You need to consider
multiple sources and different preferences, which makes the whole thing kind of more complex than
if you just have a style parameter in a native UI. Alright? But at the end of this render tree
construction, we basically have everything that gets rendered on onscreen and we have the right
CSS style attributes attached to each of the nodes. The final thing we have to do is now we have the
styles, but we don’t yet have the sizes. And so the final path that happens is a layout stage, where
we basically go from Herron down the tree to children. We determine the width of an element that
could come e.g. from a CSS style rule. Then we recurse on the children, call land on the children
if needed. Maybe calculate their height and then from all of those heights, we calculate our own
heights. So it’s kind of a panel down, bubble up algorithm where based on available width, the
calculate heights, and set those for the whole tree. And then we have basically the bounds for each
of the boxes. And once we have those box bounds, we can just call paint. And then paint. It now
has all of the absolute coordinates that it should use and abuse this drawing primitives like put
texts at x location x, y with the following color and the following font. But this is now this uses
the same underlying primitives as UI toolkit in its draw method. So we have access to 2D drawing
primitives, lines, boxes, texts, colors. So one way to look at it is that this whole rendering engine,
I’m in the browser does the work of the UI toolkit. It just does it in a kind of a more complex way
because we have to deal with the vagaries of HTML. We have to be very error permissive. Whereas
a UI toolkit, if you give it a malformed XML, let’s say error can’t deal with this. And on the other
hand, we have this really flexible Cascading Style System, which is also more complex than style
definitions in native UI Toolkit. Okay, then just briefly, so we just covered what is happening up
here. And then just briefly wanted to touch on what’s happening down here, but not in a lot of
detail. Which is we also get a bunch of JavaScript from the web server, right? So what do we do
with that? So the first part is we parse it. So a JavaScript parser. This here is kind of what we
just talked about in the parsing S aspects. So we’ll have a lexer and a parser. And then in the end,
we end up with an abstract syntax tree, which is a tree presentation of the code we just received.
Now, JavaScript is an interpreted language. But interpreting all of the JavaScript that we received
would be too slow. That’s what web browsers did in the very early days of the web. This is not
what we do any anymore. Instead, we compile JavaScript using a just-in-time or a JIT compiler
into machine code. And then. Execute that to speed it up. And in fact, just this box of how do we
make JavaScript faster has been endless engineering on that part. And what’s actually happening
in browsers these days under the hood is not just we don’t interpret, but it’s more complex than
that. So here e.g. is an example of what the V8 JavaScript engine does in Chrome. And it basically
has two pathways. He has a compiler that this is the fast pass. So we get our source code, we
compile it into bytecode. We have a bytecode interpreter and executed. And while this execution
is happening, if we have spare cycles, will say, Well, we tried to go through this path as fast as
possible. But as a result, this is not highly optimized. It’s way better than interpreting it, but
it’s still kinda slow. So that’s in the background. Launch another path. And try to optimize this
bytecode that we received with an optimizing compiler. And once that is ready, replace this binary
with an optimized binary and start executing that. Kinda way more complex. Again, then what’s
happening in a UI toolkit, right? We’re, we’re just, we’re compiling the code that you gave us and
we’re running it at runtime. Based on the design decisions that were made early on is that we
attach this JavaScript. We’re just kind of by accident, this interpreted language took over. And
now we have to deal with the fact that we have this kind of not very optimal language. But we
really want fast application performance. And so we need way more machinery on the backend to

98

get something like native performance out of it. Okay, so there are tons of details like if you want
to become a browser engineer. So Irina asks, I’m curious why not just do the optimization first,
then render the optimized code. Because this path down here is fast to compute. Slow to execute.
This path up here is slow to compute and then passed to execute.

So the desire is that like your web browser is loading and this JavaScript code, we want to start
executing it as quickly as possible, right? So from the time, from the time that we receive this
document of JavaScript, we want to start executing that code right away. So you want to do the
fast just-in-time compilation and start executing it. Then in the background, say, well, yeah, but
now this execution, this bytecode we got, we can probably do better. But it’ll take us a couple of
hundred milliseconds to maybe optimize it. So we optimize it behind the scenes and then replace
it. And yes, either could be faster as the final result. You don’t know, right? Because you’re just
getting this JavaScript code stream then in synchronously in real time. Great question. Okay.
That brings us to That’s kind of the level at which I want. However this, so if you want to
become a browser engineer, that’s like being a highly skilled software engineer in all the vagaries
of implementing either the rendering engine or the JavaScript engine. I think those are very highly
sought after skills, but only a couple of people focused on that. But hopefully, even as a application
developer, even if you’re never touching the source code of the rendering engine with the JavaScript
engine, it’s good to have the conceptual overview of what happens underneath the hood and an
understanding of it.

99

21 Thursday, April 13th: Collaboration and Social Computing

21.1 Post Midterm 2 Feedback Form

Please fill out the form pinned on EdStem if you have anything to share!

21.2 Remote Communication

21.2.1 Zoom

We all are familiar with online meetings over Zoom.

21.2.2 Collaboration Apps

• A lot of big companies fell behind because they did not allow for collaboration (ex. Microsoft
Word falling behind Google Docs)

– The companies have tried to make up for it (Word now allows collaboration) but it
hasn’t been enough – the software wasn’t designed for collaboration from the start.

– This was an easy way to make a lot of money in the early days of (EE)CS – make a new
product which is just an existing product but with collaboration

21.2.3 Calendars

Who here uses a Google Calendar (or some equivalent) to manage your schedule?

As expected, almost everyone in the room raised their hand.

The ability to anonymize what you are doing (and thus not have to worry about people scheduling
events they think are ‘more important’ over your existing events) was a key factor in its popularity.

21.3 Challenges to social software

21.3.1 Success crisis

Whether your software scales will only become apparent once you are successful, and then it’s often
too late to change the architecture (see Friendster)

This is somewhat reminiscent of “Design security in from the start” from CS 161.

100

21.4 Single Display Groupware

21.4.1 Roomware

Example: AT&T Network Center Control Room – has everyone in the same room at the same
time, even if they have different responsibilities. This helps develop a shared sense of purpose for
the end-goal and allows people to be up to the date wth the overall project status.

21.5 Graph Theory

• # of edges in a fully connected graph: n ∗ (n− 1)/2 ∼ n2

• # of edges in a tree: n− 1

Coasean Floor: The point below which the transaction costs of a particular type of activity are
too high for a standard institution to pursue. - Clay Shirky

21.6 Power Law Distributions

p(x) ∝ x−α

101

21.7 Time/Space Matrix

Same time (synchronous) Different time (asynchronous)

Same place
(co-located)

Face-to-face interactions Continuous Task

Different place
(remote)

Remote interactions Communication + Coordination

21.7.1 There goes the neighborhood:

Early adopters are often a self-selected, homogenous group; therefore utility in early stages is not
indicative of the “steady state” once successful.

When new people use your app, they may say ‘there goes the neighborhood’ to express how they
feels new users will be detrimental to the app, due to them using the app in unintended ways.

102

22 Tuesday, April 18th: Accessibility

22.1 Accessibility Goals

We should strive for design which is as inclusive as possible.

Taking a quote from physical furniture design:

There is no such thing as an average person – everyone has some different kind of arm length, leg
length, etc.

Instead we strive to include as many percentiles as possible: we should be able to accommodate
someone from the 5th %ile as well as someone from the 95th %ile and everyone in-between.

22.2 Disabilities

Disability is not a ‘personal health condition’ but a mismatched human interaction – it is something
we can and should design to accommodate.

103

22.2.1 Types of Disabilities

Note that there are different types of Disabilities which have different extents.

Making sure audio can be heard for people who just are hard of hearing due to an ear infection and
not only accommodating for people who are completely deaf is a necessity for accessible design.

104

22.3 Solve for One, Extend to Many

Curb Cuts (when the elevation in sidewalks goes down to meet the road) are helpful for people in
wheelchairs, but are also helpful for new parents who have a baby in a stroller.

22.3.1 Closed Captioning Usages

• Started for deaf people
• Good for listening to accents
• Allows you to watch videos in public spaces where it’s too loud to listen to audio
• Helpful for new language learners who do not know word pronunciations but know of the
word in its spelling

22.4 Specialized Hardware

This can help with accessibility: Braille Display is an example of this (bumps on surfaces for blind
people to feel what the display is saying).

22.5 Visual: Screen Readers

How do we make sure to not include the footer when reading a webpage out loud?
How do we ‘read’ out loud images?

We can set the alt attribute of tags to set what the image reads out loud. Note that this
extends to give an alt text in case the image cannot load.

About 8 percent of men (one in 12) and 0.5 per cent of women (one in 200) have some form of
red-green colour deficiency.

22.5.1 Do not cause Seizures!

Do not flash anything more than three times in a row.

22.6 Navigable

You can set the tabindex of <div> elements to set the sequential ordering that you navigate in
when pressing the Tab key on your keyboard.

105

23 Thursday, April 20th: Future Interfaces – VR/AR

23.1 Virtual and Augmented Reality

VR has been around since the 1950s with Heilig’s Sensorama.

23.1.1 Changes to costs of VR Hardware

However VR Arcade Games in the 1990s costed tens of thousands of dollars – but improved tech-
nology are much cheaper now (in the hundreds of dollars or less).

! If the costs are not low enough, some usages of technology will not be discovered. This is yet
another reason why making sure hardware is accessible is important.

The most obvious example of the above statement is if you want to be able to draw with brushstrokes
in 3D. Would you pay $20,000 for that? Now what if it is ≈ $0, then would you consider using it?

23.2 Augmented Reality

Definition:

AR is a computer technology that augments a physical, real-world environment directly or through
its indirect view with computer-generated information, including graphics, video, and sound.

AR may alter a user’s view of reality, and may also enhance one’s perception of reality.

Note that just like VR, there was a wave of AR in the ’90s. The thought was that it’d see usage in
car repairs/maintenance among other applications.

Microsoft Hololens2 (2019) showcases this amongst other applications (primarily in games).

23.2.1 Video see-through AR

Pokemon Go is the most well-known example of this. But it did not really try to understand the
scene – it just placed a Pokemon somewhere even if it’s not a realistic horizontal surface or sensible
with the current lighting.

106

23.2.2 HMD-based AR

Head Mounted Display is when you have a virtual display mounted on your head. Sometimes this
is paired with actual hardware, which the headset then draws on top off (in real-time), to make a
more immersive experience.

23.2.3 Hardware Complexities

There are lots of sensors and hardware parts, especially in HMDs.

23.3 Enabling Technologies/ Open Research

• Near-Eye Displays and Optics
• 3D Localization
• 3D Content Capturing
• New Human-Computer Interfaces

23.4 Getting Input

There are 3 important inputs to a VR/AR application: Head, Hands and Limbs.

23.4.1 3D Glasses

Red-Blue 3D glasses use light subtraction to make images seem as they come out to you – but in
the process you lose many red and blue colors and get a grayscaling effect.
This is known as an Anaglyph (spectral) approach.

However there is also the “Polarization multiplexing” approach which is much like polarizing (anti-
glare) sunglasses, but with a polarizing filter on each projector.

107

23.4.2 Active Shutter

These were also glasses you could wear to see 3D video from your TV – these were popular 10-14
years ago.

23.5 Head-Worn Displays

These should allow seeing-through so that you can be aware of your environment.

23.6 Audio Displays

23.6.1 Auditory Cues

• Localization: psychoacoustic process of determining direction and location from which sound
emanates

• Binaural cues:
– ITD interaural time difference
– IIT - interaural intensity difference
– HRTF - head related transfer function (physical shape of ears, ear canals)
– Reverberation
– Intensity

I ∝ 1

r2

where I is the sound pressure level, and r is distance.

HRTF measurement: For far objects, radius less important. Function of sound frequency and
position: azimuth, elevation, radius.

23.7 Reverberation

Early reflection: localization
Long tail late reflection: room characterization

23.8 Haptic Displays

• Simulate the the physical interaction between the user and objects
• Encompasses sensations of force, touch, vibration, temperature

Core challenge: cues for particular categories are very different from other categories.

108

23.9 Gustation and Olfaction Displays

Can we simulate smell and taste?

Current answer: No.

Sound: Air pressure variations over time (which is 1-dimensional). Vision: Red-Green-Blue pixels
(which are 3-dimensional).

But smells are a much more complicated dimensionality and carrying a backpack with thousands
of smells in jars is not really feasible.

With taste, we have a subset spanned by descriptions (such as salty, sour, sweet, etc) but this does
not generate a basis.

23.10 Professor Hartmann’s PhD students’ work: Pointing & Selection in 3D

How do we select stuff that is further away:

• Shrink stuff down
• Cast a ray into the scene

There has been success in making arms that reach out beyond an actual human’s reach – much like
Inspector Gadget’s mechanical arms.

Remember that since we are doing a simulation, we can alter the laws of physics that are written
in the code.

Results: you can control multiple bodies at the same time – with a natural feeling, despite it being
an action that can never happen in reality. Cognitive Science has yet to give an answer to why
that is.

23.11 Bi-manual Scaling

Pinch-to-zoom but with 2 controllers – allows us to scale the world up or down.

109

24 Tuesday, April 25th: Career Panel

24.1 Speaker List

We have Speakers from:

• Heidi Dong (LinkedIn), Software Engineer, Frontend at The New York Times
• Janaki Vivrekar (Personal, LinkedIn), Software Engineer at Amplitude
• Sonia Uppal (LinkedIn), Software Engineer at Meta
• Emily Pedersen (Personal, LinkedIn), SW Engineering Program Manager at Apple

24.2 Midterm #2 Graded

24.2.1 Regrades

Same as midterm 1.

110

https://www.linkedin.com/in/heididong/
https://janakivivrekar.com/
https://www.linkedin.com/in/janaki-vivrekar/
https://www.linkedin.com/in/soniau/
https://www.emilypedersen.me/
https://www.linkedin.com/in/epedersen1/

24.2.2 Course Standing

If you have any concerns about your standing in the course and your ability to graduate, please get
in touch with us proactively via private message on Ed Discussion.

24.3 End of the Semester

Course summary and next steps on April 27
Section: Submit update including demo video this week before section!

24.4 Design Showcase

Design Showcase runs Wed-Fri of RRR week every semester. The Jacobs Institute will promote all
courses and projects to the public.

Our presentation slot:
Design Showcase Session C:
Wednesday, 5/3 - 2-3:30pm / Jacobs Hall Room 310

Poster: Due Monday 5/1 11:59am (noon) if you want us to print it!

24.5 Poster Details

See bcourses.

24.6 Final Demo Details

See bcourses.

24.7 Q&A

How has ChatGPT changed the way you worked?

Most companies do not allow you to use ChatGPT for obvious reasons but on the side it has been
cool to play around with.

What courses were most useful?

111

https://bcourses.berkeley.edu/courses/1523321/assignments/8584015
https://bcourses.berkeley.edu/courses/1523321/assignments/8578979

I work in TypeScript which was not taught in any class at Cal but look into taking DeCals and
others, see:

• https://www.figma.com/proto/LIWnxQaKzQkYD5k5wpP8oA/classes-i’ve-taken
• https://vivrekar.medium.com/discovering-human-computer-interaction-at-uc-berkeley-
9fc211145638

112

https://www.figma.com/proto/LIWnxQaKzQkYD5k5wpP8oA/classes-i've-taken
https://vivrekar.medium.com/discovering-human-computer-interaction-at-uc-berkeley-9fc211145638
https://vivrekar.medium.com/discovering-human-computer-interaction-at-uc-berkeley-9fc211145638

25 Thursday, April 27th: Last Class

25.1 Final Lecture... but wait there’s more

CS 160 has their Jacobs Spring Design Showcase at Studio 310 on Session C (2-3:30 PM).

Note that this is the same classroom where regular lecture is held but the date is different: Wednes-
day May 4th.

25.2 Final Deliverables

What should you submit on May 10th?

• Writeup: Now that you have a working app, get feedback from 3 users, write up what you
learned and would change.

• Video: Record a demo video of the final application.
• Source Code: Remind us of the link to your repo, make sure you have a README.txt.

25.3 Takeaways

25.3.1 Why UI is Important

Major part of work for “real” programs

• Approximately 50%

You will work on “real” software

• Intended for people other than yourself

Bad user interfaces cost

• Money (5%↑ satisfaction =⇒ up to 85%↑ profits)
• Lives

User interfaces hard to get right

• People are unpredictable

So what should you do then?
Answer: Iterative Design

Finally, don’t use intuition for design – instead observe the user in context.
Also separate the designer’s conceptual model from the users’ (which is from experience & usage).

113

25.4 Future Coursework for Undergraduates

BCDI: Berkeley Certificate in Design Innovation

• Interdisciplinary certificate (like minor)
• 4 courses, CS160 counts as one of them – you are 25% done!
• Look at DES INV courses (they all count)
• https://bcdi.berkeley.edu

Decals and student Orgs:

• Web Design Decal https://wdd.io
• InnoD Decals https://www.innovativedesign.club
• Berkeley Innovation: https://www.berkeleyinnovation.org
• Extended Reality @ Berkeley: https://xr.berkeley.edu

25.4.1 Graduate School

Thinking about graduate school? Check out

• Berkeley MDes – Master in Design
• Berkeley MEng – Visual Computing
• Berkeley MIMS
• Berkeley PhD in CS; iSchool

Other Universities with top HCI programs: CMU, U Dub, Stanford, GTech, MIT, UMD, etc.

25.4.2 What if I am a Graduate student?

Relevant Graduate Courses at Berkeley

• CS294-137 Immersive Computing (Yang, Hartmann)1

• CS294-184 Building User-Centered Programming Tools (Chasins)2

• NWMEDIA 203 Critical Making (Paulos)
• CS260B Topics in HCI Research (Paulos, Hartmann)
• INFO 214: User Experience Research (Fadden)
• INFO 247: Information visualization and presentation (Hearst)
• INFO C262: Tangible User Interfaces (Ryokai)
• INFO C265: Interface Aesthetics (Ryokai)
• INFO 290: Human-Centered AI (Salehi)
• and many more!

! INFO 213 is similar to CS160 – only take one

1only ugrads allowed will be those who have taken CS 160 – and by petition
2only for PhDs

114

https://bcdi.berkeley.edu
https://wdd.io
https://www.innovativedesign.club
https://www.berkeleyinnovation.org
https://xr.berkeley.edu

25.5 Interested in HCI Research?

If you did very well in the CS160 midterms and individual projects and want to get involved as an
undergraduate research assistant, send a message on Ed Discussion and/or approach the following
HCI faculty about research opportunities:
Profs: Eric Paulos, Sarah Chasins, Aditya Parameswaran, Marti Hearst, Niloufar Salehi, Kimiko
Ryokai (EECS & ISchool).

Summer has been mostly planned but there are openings for Fall 2024.

25.6 Q&A

Q: What is the best way to get into SWE as an M.Eng.

A: Take CS 169

25.7 Course Evaluations

Please fill out https://course-evaluations.berkeley.edu/ so that the class can improve!

115

https://course-evaluations.berkeley.edu/

	Tuesday, January 17th: Welcome to User Interface Design and Development
	The dangers of poor UI/UX
	Where did we start
	The Commandline

	Course Staff and Communication
	Enrollment
	This Course
	Human-Computer Interaction (HCI)
	User Interfaces (UI)
	Why Study User Interfaces?

	Interface Design Cycle
	Contextual Inquiry
	Rapid Prototyping
	Evaluation
	Goals of the Course
	Teams
	Course Mechanics
	Office Hours
	Sections
	Readings
	Grading
	Late Assignments

	Thursday, January 19th: The Design Cycle
	UI Critique: Font Selection
	BCourses Logistics
	Where does design fit into the larger process?
	Oscillations over Project Lifespan
	Divergent vs Convergent Phases
	Waterfall Model (Software Engineering)
	Agile Software Development

	Shopping Cart Video (from abc)
	Methods
	Talking to people
	Stakeholder Map

	Brainstorming

	Tuesday, January 24th: Sketching
	Logistics: Discussion Signup
	Sketching, Brainstorming, Critique
	Case Study: Tesla Design

	Visions for the future of Car Designs
	Apple Touchscreen Car Integration (from WWDC)
	INEOS Grenadier

	Sketching
	Design Journals
	Storyboard

	Brainstorming
	Critique

	Thursday, January 26th: Task Analysis
	Administrative Details
	ChatGPT vs Google
	XEROX PARC
	XEROX 8200
	Observation Techniques

	Task Analysis
	Case Study: BART Ticket Machine
	Task Analysis Questions

	Old and New Tasks
	Learning Tasks
	Where is the task
	Geography of the BART Station

	Other Tools
	When things go wrong
	Japanese QR Code Vending Machine

	Tuesday, January 31st: In-Class Team Brainstorm
	Logistics: Assignments due!
	Team Project
	Intelligent User Interfaces
	Designing Inclusive Technologies

	In-Class Team Brainstorm: Meeting time!

	Thursday, February 2nd: Contextual Inquiry, Conceptual Models 1
	Case Study: Apple Watch
	Case Study: Calculators

	Reminder: Assignments
	Contextual Inquiry
	Goals
	Context
	Why not just interview folks?

	Affordances
	Signifiers
	Case Study: Doors

	Universal Signals
	Incorrect signifiers

	Tuesday, February 7th: Conceptual Models (continued)
	Make Controls Visible
	Don't overload the User
	Make Controls Clear
	Case Study: Stovetop Controls
	Use Transfer Learning
	Provide Feedback

	Action Cycle
	Gulf of Evaluation
	Gulf of Execution

	Interface Languages
	Semantic & Articulatory Distance
	Case Study: Adding Autocomplete
	Spell and Grammar Suggestions

	Direct Manipulation
	Metaphor
	Modes
	Fixing the Problems with Modes
	Quasimodes

	Thursday, February 9th: Human Information Processing
	Galileo AI
	Review: Modes
	Keyboard Modes: QWERTY, QWERTZ, AZERTY
	Air France Flight 447

	Modeling Human Performance
	Motivation
	Model Information Processor Theory
	Perceptual Processor
	Michotte Demonstration

	Memory
	Attention Span
	Long-Term Memory

	Cognitive Processor
	Flight Eastern 401
	Stroop Effect
	Input Stratification

	Stage Theory
	Recognition over Recall

	Decision Making and Learning
	Hick's Law: Decision Paralysis
	Power Law of Practice

	Pointing
	Fitts' Law: Distance and Target Size
	Index of Difficulty
	Fitts' Law Tasks

	The Power of Right-clicking: having options come to you

	Bandwidth of Human Muscle Groups

	Tuesday, February 14th: Input
	Interface Critique
	Dual-Screen Devices
	Microsoft Research: Codex
	Microsoft Research: Courier

	Administravia: Midterm 1
	Scope

	Input Devices
	Text Entry: Keystroke Devices
	DVORAK vs QWERTY
	Mobile Difficulty
	Soft Keys
	Drawing/Handwriting Recognition
	Graffiti
	EdgeWrite
	Stroke writing
	Speech Dictation

	Important Device Properties
	Indirect vs Direct
	C:D Ratio
	Device Acquisition Time

	Quadrature Encoding
	Optical Mice
	Trackpoint
	Resistive Touchscreens
	Capacitive Touchscreens
	Exploit the edges

	Thursday, February 16th: Input (contd.) and Prototyping
	In the news: Adobe Acquisition of Figma
	Input Devices (contd.)
	Buxton's 3-State Model of Input

	Prototyping Theory
	The Value of Prototyping
	Epistemic actions
	The Value of Surprise

	Why Prototype?
	Paper Prototyping
	Wizard of Oz Testing

	Testing Device-Based Interfaces
	Prototyping in Software
	Fidelity in Prototyping
	Low-fidelity ``Informal'' design tools
	Advantages
	Disadvantages

	High-fidelity visual mockups
	Disadvantages

	High-fidelity, fully-interactive prototypes

	Video Prototyping

	Tuesday, February 21st: Visual Design
	Graphic Design
	Communication
	Interpretation
	History
	Minimalism
	Bauhaus Thinking
	Single axis of view
	Grid-based Design

	Visual Design
	Corporate Identity
	Logos

	Product Design
	Streamlining
	Form Follows Function
	Simplicity and Elegance
	Simplicity
	Elegance
	Reduction
	Regularization
	Leverage

	Unity
	 Refinement
	 Color
	Color Spaces
	Additive vs Subtractive

	Perceptual Organization
	Munsell Color Space

	 Gestalt Principles
	Figure/Ground
	Proximity
	Similarity
	Symmetry
	Connectedness
	Continuity
	Closure
	Common Fate
	Transparency

	 Fonts
	Serif
	Sans Serif
	Monospace

	Thursday, February 23th: Midterm 1 Review
	Logistics
	Composition
	Alignment
	Common Mistakes
	Summary
	Review

	Tuesday, February 28th: Midterm 1
	Next Class: Thursday, March 2nd
	Work with your groupmates

	Tuesday, March 7th: Visualization Patterns
	Information Visualization, Design Patterns

	Thursday, March 9th: Usability Inspection
	Usability Testing
	Inspection Techniques
	Cognitive Walkthrough

	Example: Find a book in a library
	Heuristic Evaluation
	Visibility of system status
	Match System and World
	User control and freedom
	Consistency and standards
	Error prevention
	Recognition over Recall
	Flexibility and efficiency of use
	Aesthetic and Minimalist Design
	Help users diagnose recognise
	Provide help and documentation

	Heuristic Evaluation Steps
	Pros and Cons of HE vs User Testing

	Thursday, March 16th: Empirical Evaluation
	GPT4: AI-based Rapid Prototyping
	Qualitative Empirical Evaluation
	Trends from Qualitative data

	Quantitative Empirical Evaluation
	Approaches
	Examples of measures

	Qualitative vs Quantitative

	Designing Controlled Experiments
	Managing Study Participants
	The Three Belmont Principles

	Ethics
	Privacy and Confidentiality

	Tuesday, March 21st: Data Analysis
	Managing Study Participants
	Treating Subjects with Respect
	Data Analysis
	Bubble Cursor Attributes
	Hypotheses
	Independent Variable
	Dependent Variable
	Control Variables
	Random Variable
	Control Variables

	Counting Analysis
	Continuous Data
	Categorical Data

	Cleaning Data
	Skewed Distributions
	Negative skew
	Positive skew

	Power Law Distributions
	Confidence Intervals
	Hypothesis Testing
	p-values

	Statistical tests
	Between-subject study: Unpaired vs Paired
	t-Test
	Assumptions

	Mann-Whitney's U Test
	Parametric vs non-parametric
	When to use non-parametric tests

	ANOVA
	Objective measurements

	Thursday, March 23rd: Native vs Web Apps
	Implementing Interfaces, Part 1
	Xerox Alto (1973)

	Native Apps: GUI Toolkits
	Native Apps
	Android SDK Example

	Web Apps
	Disentangling
	DOM (Document Object Model)
	Web App with server-side code
	Client-side Web Frameworks

	Tuesday, April 4th: Native Events – Widgets, Events, Model-View-Controller
	Unexpected Circumstances
	Administrative Matters
	Midterm 1 Regrades
	Midterm 2 Logistics
	Scope:
	Readings Scope
	Course curving scheme

	Next Team Project Assignment

	Native App Concepts

	Thursday, April 6th: Browser
	Midterm Logistics Review
	Implementation
	Where are we in the course?
	Parsers

	Thursday, April 13th: Collaboration and Social Computing
	Post Midterm 2 Feedback Form
	Remote Communication
	Zoom
	Collaboration Apps
	Calendars

	Challenges to social software
	Success crisis

	Single Display Groupware
	Roomware

	Graph Theory
	Power Law Distributions
	Time/Space Matrix
	There goes the neighborhood:

	Tuesday, April 18th: Accessibility
	Accessibility Goals
	Disabilities
	Types of Disabilities

	Solve for One, Extend to Many
	Closed Captioning Usages

	Specialized Hardware
	Visual: Screen Readers
	Do not cause Seizures!

	Navigable

	Thursday, April 20th: Future Interfaces – VR/AR
	Virtual and Augmented Reality
	Changes to costs of VR Hardware

	Augmented Reality
	Video see-through AR
	HMD-based AR
	Hardware Complexities

	Enabling Technologies/ Open Research
	Getting Input
	3D Glasses
	Active Shutter

	Head-Worn Displays
	Audio Displays
	Auditory Cues

	Reverberation
	Haptic Displays
	Gustation and Olfaction Displays
	Professor Hartmann's PhD students' work: Pointing & Selection in 3D
	Bi-manual Scaling

	Tuesday, April 25th: Career Panel
	Speaker List
	Midterm #2 Graded
	Regrades
	Course Standing

	End of the Semester
	Design Showcase
	Poster Details
	Final Demo Details
	Q&A

	Thursday, April 27th: Last Class
	Final Lecture... but wait there's more
	Final Deliverables
	Takeaways
	Why UI is Important

	Future Coursework for Undergraduates
	Graduate School
	What if I am a Graduate student?

	Interested in HCI Research?
	Q&A
	Course Evaluations

